论文阅读:PANet:A Context Based Predicate Association Network for Scene Graph Generation(ICME19)

在这里插入图片描述
整个网络结构可以分成两部分,先说前半截:
在这里插入图片描述
深蓝、蓝、浅蓝三种颜色表示的特征分别为class embedding、spatial info、visual feature,cat后线性变换一下,得到特征V
在这里插入图片描述
之后再对整幅图像的所有主客体对计算出的V经过RNN,得到实例级别的上下文
在这里插入图片描述
整幅图像经过CNN提取的feature map线性变换一下,作为场景级别的上下文,然后与实例级别上下文相加得到融合上下文G,最终物体的类别由融合上下文得到在这里插入图片描述在这里插入图片描述

后半截:
在这里插入图片描述
红色箭头即为输入特征的计算方式:
主客体的上下文和union feature map的融合,得到U,即融合特征
在这里插入图片描述
然后把融合特征复制n份,分别与不同谓语的word embedding特征cat在一起,得到对齐特征R
这n种对齐特征输入RNN,得到n种谓语上下文特征
在这里插入图片描述
由于不同的谓语对最终的上下文影响不同,使用了注意力机制,最终的谓语上下文特征是这n种上下文的加权
在这里插入图片描述
谓语分类取决于谓语上下文特征:
在这里插入图片描述

------------------------------一些碎碎念-----------------------------
妈妈上班去了 要3月才能回来。
15551

### 关于A-PANet的论文下载与阅读 目前提到的内容主要围绕PANet展开,而未提及具体的“A-PANet”。如果“A-PANet”是指某种改进版或变体版本,则可能需要进一步确认其具体定义和来源。以下是关于如何获取和理解相关内容的方法: #### 1. **PANet的核心概念** PANet是一种基于Metric Learning思想设计的小样本语义分割网络[^1]。它通过引入自底向上的路径增强(Bottom-Up Path Augmentation),以及一种新的自适应特征池化机制(Adaptive Feature Pooling),显著提升了目标检测的效果[^2][^5]。 #### 2. **资源获取方法** 对于希望找到“A-PANet”的情况,可以尝试以下途径: - 如果“A-PANet”是特定领域中的扩展版本,建议查阅最新的学术会议论文集合(如CVPR、ICCV、ECCV等)。 - 使用百度网盘链接提供的资料进行验证是否包含相关信息[^3]。 - 查阅深度学习图像分割领域的综述文章,了解是否有针对“A-PANet”的讨论[^4]。 #### 3. **实验结果分析** 在COCO数据集上,PANet的表现优于其他主流的目标检测算法(如Mask R-CNN、FCIS、RetinaNet),尤其是在使用ResNeXt-101作为主干网络时,单模型性能达到了较高的水平(mAP约为45%)。这种优异表现得益于其独特的架构设计。 #### 4. **代码实现参考** 下面是一个简单的Python脚本用于加载预训练权重并测试PANet的功能(假设已安装必要的库): ```python import torch from torchvision.models.detection import maskrcnn_resnet50_fpn, MaskRCNN_ResNet50_FPN_Weights def load_pananet_model(): weights = MaskRCNN_ResNet50_FPN_Weights.DEFAULT model = maskrcnn_resnet50_fpn(weights=weights, progress=True) model.eval() return model if __name__ == "__main__": device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') pananet = load_pananet_model().to(device) # Example input tensor (batch of images) example_input = [torch.rand(3, 600, 800).to(device)] with torch.no_grad(): predictions = pananet(example_input) print(predictions) ``` 上述代码展示了如何加载一个基础的目标检测模型,并对其进行推理操作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值