一、图的匹配与贝尔热问题
\quad
图匹配概念:如果M是图G的边子集(不含环),且M中的任意两条边没有共同顶点,则称M是G的一个匹配或对集或边独立集。如下图所示:
\quad
若顶点是M中某条边的顶点,则称它为M饱和点,否则为M非饱和点。
\quad
最大匹配 M— 如果M是图G的包含边数最多的匹配,称M是G的一个最大匹配。特别是,若最大匹配饱和了G的所有顶点,称它为G的一个完美匹配。一个图一定存在最大匹配,不一定存在完美匹配。首先完美匹配要求有偶数个点。
贝尔热定理
\quad
G的匹配M是最大匹配,当且仅当G不包含M可扩路。
M可扩路:如果M是图G的匹配,G中一条由M中的边和非M中的边交错形成的路,称为G中的一条M交错路。特别地,若M交错路的起点与终点是M非饱和点,称这种M交错路为M可扩路。(如果G中顶点v是G的匹配 M中某条边的端点,称它为M饱和点,否则为M非饱和点)
二、偶图的匹配与覆盖
1、偶图匹配存在性判定——Hall定理
设G=(X, Y)是偶图,则G存在饱和X每个顶点的匹配的充要条件是:
∀
S
⊆
X
,
∣
N
(
S
)
∣
≥
∣
S
∣
\forall S\subseteq X,|N(S)| \geq |S|
∀S⊆X,∣N(S)∣≥∣S∣
推论1:若G是k(k>0)正则偶图,则G存在完美匹配。
证明:一方面,由于G是k (k>0)正则偶图,所以k|X|=k|Y|,于是得|X| = |Y|;另一方面,对于X的任一非空子集S, 设E1与E2分别是与S和N(S)关联的边集,显然有
E
1
⊆
E
2
E_1 \subseteq E_2
E1⊆E2,即
∣
E
1
∣
=
k
∣
s
∣
≤
∣
E
2
∣
=
k
∣
N
(
s
)
∣
|E_1|=k|s|\le |E_2|=k|N(s)|
∣E1∣=k∣s∣≤∣E2∣=k∣N(s)∣,由hall定理,且|x|=|y|,所以G存在完美匹配。
推论2:每个k方体都有完美匹配
证明:每个k方体都有
2
k
2^k
2k个顶点,每个顶点可由长度为k的二进制码来表示,两顶点之间连线当且仅当两顶点的二进制码只有一位坐标不同。若将坐标之和为偶数的顶点归入X,为奇数的归入Y,则X中顶点互不连接,Y中也互不连接,故k方体是偶图。又不难知道k方体是k正则偶图,故k方体存在完美匹配。
推论3:
K
2
n
K_{2n}
K2n中完美匹配个数为
(
2
n
−
1
)
K
2
n
−
2
(2n-1)K_{2n-2}
(2n−1)K2n−2,如此递推下去,可得其完美匹配个数为
(
2
n
−
1
)
!
!
(2n-1)!!
(2n−1)!!;
K
n
,
n
K_{n,n}
Kn,n中完美匹配个数为
n
!
n!
n!
推论4:树至多存在一个完美匹配
证明:若不然,设M1与M2是树T的两个不同的完美匹配,那么M1ΔM2≠Φ,容易知道:T[M1ΔM2]每个非空部分顶点度数为2,即它存在圈,于是推出T中有圈,矛盾。
2、图的点覆盖
\quad
图的点覆盖 —G的一个顶点子集K称为G的一个点覆盖,如果G的每条边都至少有一个端点在K中。G的一个包含点数最少的点覆盖称为G的最小点覆盖,其包含的点数称为G的覆盖数,记为α(G).如图
3、设M是G的匹配,K是G的覆盖,若|M|=|K|,则M是最大匹配,而G是最小覆盖
\quad
此定理即为最大匹配最小覆盖定理。若M为G的匹配,K为G的覆盖,当匹配边数等于覆盖点数时该匹配为最大匹配。
4、哥尼定理
\quad 在偶图中,最大匹配的边数等于最小覆盖的点数(直观感觉可得)
5、托特定理
\quad
图G有完美匹配当且仅当对V的任意非空真子集S, 有:
o
(
G
−
S
)
≤
∣
S
∣
o(G-S) \le |S|
o(G−S)≤∣S∣
注:
o
(
G
−
S
)
o(G-S)
o(G−S)为奇分支个数
推论:没有割边的3正则图存在完美匹配。