方阵的行列式
二阶行列式
对于2x2型线性方程组,可以将其变为
解
x
1
=
b
1
a
22
−
b
2
a
12
a
11
a
22
−
a
21
a
12
,
x
2
=
a
11
b
2
−
a
21
b
1
a
11
a
22
−
a
21
a
12
x_1=\frac{b_1 a_{22}-b_2 a_{12}}{a_{11}a_{22}-a_{21}a_{12}},x_2=\frac{a_{11}b_2-a_{21}b_1}{a_{11}a_{22}-a_{21}a_{12}}
x1=a11a22−a21a12b1a22−b2a12,x2=a11a22−a21a12a11b2−a21b1的形式,引入行列式作为
x
1
、
x
2
x_1、x_2
x1、x2的简写法
∣
a
11
a
12
a
21
a
22
∣
\left|\begin{array}{cccc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right|
∣∣∣∣a11a21a12a22∣∣∣∣
主对角线两元素乘积-副对角线两元素乘积=行列式的值
n阶行列式
引入一个递归定义:
有A=[aij]nxn,把
∣
a
11
a
12
⋯
a
1
n
a
21
a
22
⋯
a
2
n
⋮
⋮
⋮
a
n
1
a
n
2
⋯
a
n
n
∣
\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array}\right|
∣∣∣∣∣∣∣∣∣a11a21⋮an1a12a22⋮an2⋯⋯⋯a1na2n⋮ann∣∣∣∣∣∣∣∣∣
称为方阵A的行列式,这就是一个n阶行列式,记作det(A)或|A|
它是按照下述运算法则表达的一个算式:
当n=1时, d e t ( A ) = a 11 det(A)=a_{11} det(A)=a11
当n>1时, d e t ( A ) = ∑ k = 1 n ( − 1 ) k + 1 d e t ( A ( k , 1 ) ) det(A)=\sum_{k=1}^n (-1)^{k+1}det(A(k,1)) det(A)=∑k=1n(−1)k+1det(A(k,1))
其中 d e t ( A ( k , 1 ) ) det(A(k,1)) det(A(k,1))是aij的余子阵A(k,1)对应的行列式,称为aij的余子式
余子阵就是从方阵A=[aij]nxn中去掉aij所在的第i行和第j列所有元素后余下的n-1阶方阵,记为A(i,j),这里去掉了第k行和第1列,得到余子阵A(k,1)
把 ( − 1 ) i + j d e t ( A ( i , j ) ) (-1)^{i+j}det(A(i,j)) (−1)i+jdet(A(i,j))叫做aij的代数余子式,记作 A i j = ( − 1 ) i + j d e t ( A ( i , j ) ) A_{ij}=(-1)^{i+j}det(A(i,j)) Aij=(−1)i+jdet(A(i,j))
按照代数余子式的符号,有det(A)=a11A11+a21A21+…+an1An1,这就是det(A)按第1列的展开式
由这个定义,就可以把n行列式任意展开
行列式的性质
转置无关性
∣ A T ∣ = ∣ A ∣ |A^T|=|A| ∣AT∣=∣A∣
因此行列式可以按照任意列或任意行展开,可以得到第i行和第j列的展开式,并根据这些展开式递归得到行列式的值(虽然不太可能会用这个方法算)
若方阵A某行或某列的元素全为0,则|A|=0
线性
代数余子式向量
设aj为A的第j个列向量,把向量$ \tilde{a_j}=[A_{1j},A_{2j},\cdots,A_{nj}]^T$称为aj的代数余子式向量
由这个定义,可以将之前所述按任意列/任意行的展开式写成 ∣ A ∣ = a j ~ T a j |A|=\tilde{a_j}^Ta_j ∣A∣=aj~Taj或 ∣ A ∣ = a j ~ a j |A|=\tilde{a_j}a_j ∣A∣=aj~aj
可以得到一个基本性质:
若方阵A和B只有第j列不同,则它们两者的第j列的代数余子式向量相同
线性性质
行列式具有分行/分列齐次性和可加性,也就是具有分行/分列线性性质
具体表现在:
-
行列式乘k=k乘行列式其中一行/列
-
两个只有第i行/列不同的行列式相加=第i行/列两个不同值对应相加,其他行/列不变的行列式
-
对于n阶行列式,|kA|=kn|A|,也就是可以把行列式中的系数乘以n次幂后提出来
-
若方阵A中有两行/列相同或成比例或有一列/行是另外两列/行之和,则|A|=0
-
倍加变换不改变行列式的值:对方阵A进行任意次倍加行/列变换得到B,对应的行列式不变,即|A|=|B|
-
每对方阵A进行一次对调变换,行列式|A|的值就变为原来的相反数(用C语言伪代码描述就是if(对调变换) |A|=-|A|;)
-
行列式每一列的每个元素乘另一列对应元素的代数余子式之和等于0
行列式的计算
按行(列)展开法
当行列式中某些行或列0元素较多时可以通过按行/列展开的方法计算
化为三角形行列式
基本结论
所有三角形矩阵的行列式都等于其对角元的乘积
对任何方阵A,通过有限次倍加变换就能将其化为上三角/下三角形矩阵,所以可以将一些无规则行列式化简再计算
先化简再展开
选取行列式的一行或一列,使用倍加变换将改行/列化为只剩下一个数不为零的情形,再按这一行/列展开
范德蒙德行列式
形如
[
1
1
1
⋯
1
x
1
x
2
x
3
⋯
x
n
x
1
2
x
2
2
x
3
2
⋯
x
n
2
⋮
⋮
⋮
⋮
x
1
n
−
1
x
2
n
−
1
x
3
n
−
1
⋯
x
n
n
−
1
]
\left[\begin{matrix} 1 & 1 & 1 & \cdots & 1 \\ x_1 & x_2 & x_3 & \cdots & x_n \\ x_1^2 & x_2^2 & x_3^2 & \cdots & x_n^2 \\ \vdots & \vdots & \vdots & & \vdots \\ x_1^{n-1} & x_2^{n-1} & x_3^{n-1} & \cdots & x_n^{n-1} \end{matrix}\right]
⎣⎢⎢⎢⎢⎢⎡1 x1 x12 ⋮x1n−1 1x2 x22⋮x2n−1 1 x3x32⋮x3n−1⋯ ⋯ ⋯⋯1xnxn2⋮xnn−1⎦⎥⎥⎥⎥⎥⎤
的方阵称为范德蒙德矩阵,对应的行列式
d
e
t
(
V
n
)
det(V_n)
det(Vn)称为范德蒙德行列式
KaTeX parse error: Unknown column alignment: 2 at position 21: …t|\begin{array}2̲1 & 1 & 1 …
经过“从最后一行开始,每行减去上一行的x1倍”,并提出公因式,反复多次后,可得到
d
e
t
(
V
n
)
=
∏
1
≤
i
<
j
≤
n
(
x
j
−
x
i
)
=
(
x
n
−
x
n
−
1
)
(
x
n
−
x
n
−
2
)
⋯
(
x
n
−
x
1
)
(
x
n
−
1
−
x
n
−
2
)
⋯
(
x
n
−
1
−
x
1
)
⋯
(
x
2
−
x
1
)
det(V_n)=\prod_{1 \le i < j \le n}(x_j-x_i)= \begin{matrix} (x_n-x_{n-1})(x_n-x_{n-2})\cdots(x_n-x_1)\\ (x_{n-1}-x_{n-2})\cdots(x_{n-1-x_1})\\ \cdots\\ (x_2-x_1) \end{matrix}
det(Vn)=1≤i<j≤n∏(xj−xi)=(xn−xn−1)(xn−xn−2)⋯(xn−x1)(xn−1−xn−2)⋯(xn−1−x1)⋯(x2−x1)
注意 V n T V^T_n VnT不是范德蒙德矩阵,需要转置后才能按范德蒙德矩阵进行计算
其他所有行加到某一行,再依次相减
对于每一行/列中都只有一个数Y不同,其他所有地方都是相同的数R这样的矩阵,应该把所有其他行乘1加到某一行,这一行就会包含Y+nR的值,依次将其他行相减,就能得到易于提出公因式的行列式元素
化简后即可变成三角行列式进行计算
各行(列)元素之和相等的行列式
把其他行/列都加到第1行/列,再用每一行/列都减去第1行/列,就能将行列式化为三角形行列式
箭型行列式
将第i+1列/行的 − c i a i -\frac{c_i}{a_i} −aici倍都加到第1列/行,最后就能得到一个三角形行列式
递推法、三对角行列式
三对角行列式就是主对角线及其两边元素都有值
将行列式按第1行展开,得到 D n = 5 D n − 1 − 6 D n − 2 D_n=5D_{n-1}-6D_{n-2} Dn=5Dn−1−6Dn−2递推公式
进一步整理得 D n = 3 n + 1 − 2 n + 1 D_n=3^{n+1}-2^{n+1} Dn=3n+1−2n+1
对于特例
$$
\left|\begin{array}{cccc}
a & b & 0 & \cdots & 0 & 0 \
c & a & b & \cdots & 0 & 0 \
0 & c & a & \cdots & 0 & 0 \
\vdots & \vdots & \vdots & & \vdots & \vdots \
0 & 0 & 0 & \cdots & a & b \
0 & 0 & 0 & \cdots & c & a
\end{array}\right|=
\left{
\begin{aligned}
(n+1)x^n_1 & (x_1=x_2)\
\frac{x_1{n+1}-x_2{n+1}}{x_1-x_2} & (x_1 \neq x_2)
\end{aligned}\
\right.
$$
其中
x
1
x_1
x1和
x
2
x_2
x2是方程
x
2
−
a
x
+
b
c
=
0
x^2-ax+bc=0
x2−ax+bc=0的根
分块三角形行列式的性质
基本性质
A、B分别是m阶和n阶方阵,C为mxn矩阵,则
∣
A
C
O
B
∣
=
∣
A
∣
⋅
∣
B
∣
\left| \begin{matrix} A & C \\ O & B \\ \end{matrix} \right|= |A|\cdot|B|
∣∣∣∣AOCB∣∣∣∣=∣A∣⋅∣B∣
A、B都是n阶方阵,则
∣
A
B
∣
=
∣
A
∣
⋅
∣
B
∣
|AB|=|A|\cdot|B|
∣AB∣=∣A∣⋅∣B∣,有
∣
A
B
∣
=
∣
B
A
∣
|AB|=|BA|
∣AB∣=∣BA∣
A为n阶方阵,k为正整数,则 ∣ A k ∣ = ∣ A ∣ k |A^k|=|A|^k ∣Ak∣=∣A∣k
扩展性质
A、B分别是m阶和n阶方阵,C为mxn矩阵,则
∣
A
C
O
B
∣
=
∣
A
∣
⋅
∣
B
∣
\left| \begin{matrix} A & C \\ O & B \\ \end{matrix} \right|= |A|\cdot|B|
∣∣∣∣AOCB∣∣∣∣=∣A∣⋅∣B∣
∣ A O C B ∣ = ∣ A ∣ ⋅ ∣ B ∣ \left| \begin{matrix} A & O \\ C & B \\ \end{matrix} \right|= |A|\cdot|B| ∣∣∣∣ACOB∣∣∣∣=∣A∣⋅∣B∣
∣ O B A O ∣ = ( − 1 ) m n ∣ A O O B ∣ = ( − 1 ) m n ∣ A ∣ ⋅ ∣ B ∣ \left| \begin{matrix} O & B \\ A & O \\ \end{matrix} \right|= (-1)^{mn}\left| \begin{matrix} A & O \\ O & B \\ \end{matrix} \right|= (-1)^{mn}|A|\cdot|B| ∣∣∣∣OABO∣∣∣∣=(−1)mn∣∣∣∣AOOB∣∣∣∣=(−1)mn∣A∣⋅∣B∣
∣ O B A C ∣ = ( − 1 ) m n ∣ A ∣ ⋅ ∣ B ∣ \left| \begin{matrix} O & B \\ A & C \\ \end{matrix}\right|= (-1)^{mn}|A|\cdot|B| ∣∣∣∣OABC∣∣∣∣=(−1)mn∣A∣⋅∣B∣
∣ D B A O ∣ = ( − 1 ) m n ∣ A ∣ ⋅ ∣ B ∣ \left| \begin{matrix} D & B \\ A & O \\ \end{matrix}\right|= (-1)^{mn}|A|\cdot|B| ∣∣∣∣DABO∣∣∣∣=(−1)mn∣A∣⋅∣B∣