线性代数笔记【行列式】

方阵的行列式

二阶行列式

对于2x2型线性方程组,可以将其变为

x 1 = b 1 a 22 − b 2 a 12 a 11 a 22 − a 21 a 12 , x 2 = a 11 b 2 − a 21 b 1 a 11 a 22 − a 21 a 12 x_1=\frac{b_1 a_{22}-b_2 a_{12}}{a_{11}a_{22}-a_{21}a_{12}},x_2=\frac{a_{11}b_2-a_{21}b_1}{a_{11}a_{22}-a_{21}a_{12}} x1=a11a22a21a12b1a22b2a12,x2=a11a22a21a12a11b2a21b1的形式,引入行列式作为 x 1 、 x 2 x_1、x_2 x1x2的简写法
∣ a 11 a 12 a 21 a 22 ∣ \left|\begin{array}{cccc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right| a11a21a12a22
主对角线两元素乘积-副对角线两元素乘积=行列式的值

n阶行列式

引入一个递归定义:

有A=[aij]nxn,把
∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ \left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array}\right| a11a21an1a12a22an2a1na2nann
称为方阵A的行列式,这就是一个n阶行列式,记作det(A)或|A|

它是按照下述运算法则表达的一个算式:

当n=1时, d e t ( A ) = a 11 det(A)=a_{11} det(A)=a11

当n>1时, d e t ( A ) = ∑ k = 1 n ( − 1 ) k + 1 d e t ( A ( k , 1 ) ) det(A)=\sum_{k=1}^n (-1)^{k+1}det(A(k,1)) det(A)=k=1n(1)k+1det(A(k,1))

其中 d e t ( A ( k , 1 ) ) det(A(k,1)) det(A(k,1))是aij余子阵A(k,1)对应的行列式,称为aij余子式

余子阵就是从方阵A=[aij]nxn中去掉aij所在的第i行和第j列所有元素后余下的n-1阶方阵,记为A(i,j),这里去掉了第k行和第1列,得到余子阵A(k,1)

( − 1 ) i + j d e t ( A ( i , j ) ) (-1)^{i+j}det(A(i,j)) (1)i+jdet(A(i,j))叫做aij代数余子式,记作 A i j = ( − 1 ) i + j d e t ( A ( i , j ) ) A_{ij}=(-1)^{i+j}det(A(i,j)) Aij=(1)i+jdet(A(i,j))

按照代数余子式的符号,有det(A)=a11A11+a21A21+…+an1An1,这就是det(A)按第1列的展开式

由这个定义,就可以把n行列式任意展开

行列式的性质

转置无关性

∣ A T ∣ = ∣ A ∣ |A^T|=|A| AT=A

因此行列式可以按照任意列或任意行展开,可以得到第i行和第j列的展开式,并根据这些展开式递归得到行列式的值(虽然不太可能会用这个方法算)

若方阵A某行或某列的元素全为0,则|A|=0

线性

代数余子式向量

设aj为A的第j个列向量,把向量$ \tilde{a_j}=[A_{1j},A_{2j},\cdots,A_{nj}]^T$称为aj的代数余子式向量

由这个定义,可以将之前所述按任意列/任意行的展开式写成 ∣ A ∣ = a j ~ T a j |A|=\tilde{a_j}^Ta_j A=aj~Taj ∣ A ∣ = a j ~ a j |A|=\tilde{a_j}a_j A=aj~aj

可以得到一个基本性质:

若方阵A和B只有第j列不同,则它们两者的第j列的代数余子式向量相同

线性性质

行列式具有分行/分列齐次性和可加性,也就是具有分行/分列线性性质

具体表现在:

  • 行列式乘k=k乘行列式其中一行/列

  • 两个只有第i行/列不同的行列式相加=第i行/列两个不同值对应相加,其他行/列不变的行列式

  • 对于n阶行列式,|kA|=kn|A|,也就是可以把行列式中的系数乘以n次幂后提出来

  • 若方阵A中有两行/列相同或成比例或有一列/行是另外两列/行之和,则|A|=0

  • 倍加变换不改变行列式的值:对方阵A进行任意次倍加行/列变换得到B,对应的行列式不变,即|A|=|B|

  • 每对方阵A进行一次对调变换,行列式|A|的值就变为原来的相反数(用C语言伪代码描述就是if(对调变换) |A|=-|A|;)

  • 行列式每一列的每个元素乘另一列对应元素的代数余子式之和等于0

行列式的计算

按行(列)展开法

当行列式中某些行或列0元素较多时可以通过按行/列展开的方法计算

化为三角形行列式

基本结论

所有三角形矩阵的行列式都等于其对角元的乘积

对任何方阵A,通过有限次倍加变换就能将其化为上三角/下三角形矩阵,所以可以将一些无规则行列式化简再计算

先化简再展开

选取行列式的一行或一列,使用倍加变换将改行/列化为只剩下一个数不为零的情形,再按这一行/列展开

范德蒙德行列式

形如
[ 1   1   1 ⋯   1 x 1   x 2   x 3 ⋯   x n x 1 2     x 2 2 x 3 2 ⋯ x n 2 ⋮ ⋮ ⋮ ⋮ x 1 n − 1   x 2 n − 1 x 3 n − 1 ⋯ x n n − 1 ] \left[\begin{matrix} 1  & 1 &   1 & \cdots  & 1 \\ x_1  & x_2 &   x_3 & \cdots  & x_n \\ x_1^2  &  x_2^2 & x_3^2 & \cdots & x_n^2 \\ \vdots & \vdots & \vdots & & \vdots \\ x_1^{n-1} & x_2^{n-1} & x_3^{n-1} & \cdots & x_n^{n-1} \end{matrix}\right] 1 x1 x12 x1n1 1x2 x22x2n1 1 x3x32x3n1  1xnxn2xnn1
的方阵称为范德蒙德矩阵,对应的行列式 d e t ( V n ) det(V_n) det(Vn)称为范德蒙德行列式
KaTeX parse error: Unknown column alignment: 2 at position 21: …t|\begin{array}2̲1  & 1 &   1 …

经过“从最后一行开始,每行减去上一行的x1倍”,并提出公因式,反复多次后,可得到
d e t ( V n ) = ∏ 1 ≤ i < j ≤ n ( x j − x i ) = ( x n − x n − 1 ) ( x n − x n − 2 ) ⋯ ( x n − x 1 ) ( x n − 1 − x n − 2 ) ⋯ ( x n − 1 − x 1 ) ⋯ ( x 2 − x 1 ) det(V_n)=\prod_{1 \le i < j \le n}(x_j-x_i)= \begin{matrix} (x_n-x_{n-1})(x_n-x_{n-2})\cdots(x_n-x_1)\\ (x_{n-1}-x_{n-2})\cdots(x_{n-1-x_1})\\ \cdots\\ (x_2-x_1) \end{matrix} det(Vn)=1i<jn(xjxi)=(xnxn1)(xnxn2)(xnx1)(xn1xn2)(xn1x1)(x2x1)

注意 V n T V^T_n VnT不是范德蒙德矩阵,需要转置后才能按范德蒙德矩阵进行计算

其他所有行加到某一行,再依次相减

对于每一行/列中都只有一个数Y不同,其他所有地方都是相同的数R这样的矩阵,应该把所有其他行乘1加到某一行,这一行就会包含Y+nR的值,依次将其他行相减,就能得到易于提出公因式的行列式元素

化简后即可变成三角行列式进行计算

各行(列)元素之和相等的行列式

把其他行/列都加到第1行/列,再用每一行/列都减去第1行/列,就能将行列式化为三角形行列式

箭型行列式

将第i+1列/行的 − c i a i -\frac{c_i}{a_i} aici倍都加到第1列/行,最后就能得到一个三角形行列式

递推法、三对角行列式

三对角行列式就是主对角线及其两边元素都有值

将行列式按第1行展开,得到 D n = 5 D n − 1 − 6 D n − 2 D_n=5D_{n-1}-6D_{n-2} Dn=5Dn16Dn2递推公式

进一步整理得 D n = 3 n + 1 − 2 n + 1 D_n=3^{n+1}-2^{n+1} Dn=3n+12n+1

对于特例
$$
\left|\begin{array}{cccc}
a  & b &   0 & \cdots  & 0 & 0 \
c  & a &   b & \cdots  & 0 & 0 \
0  &  c & a & \cdots & 0 & 0 \
\vdots & \vdots & \vdots & & \vdots & \vdots \
0 & 0 & 0 & \cdots & a & b \
0 & 0 & 0 & \cdots & c & a
\end{array}\right|=

\left{
\begin{aligned}
(n+1)x^n_1 & (x_1=x_2)\
\frac{x_1{n+1}-x_2{n+1}}{x_1-x_2} & (x_1 \neq x_2)
\end{aligned}\
\right.
$$
其中 x 1 x_1 x1 x 2 x_2 x2是方程 x 2 − a x + b c = 0 x^2-ax+bc=0 x2ax+bc=0的根

分块三角形行列式的性质

基本性质

A、B分别是m阶和n阶方阵,C为mxn矩阵,则
∣ A C O B ∣ = ∣ A ∣ ⋅ ∣ B ∣ \left| \begin{matrix} A & C \\ O & B \\ \end{matrix} \right|= |A|\cdot|B| AOCB=AB
A、B都是n阶方阵,则 ∣ A B ∣ = ∣ A ∣ ⋅ ∣ B ∣ |AB|=|A|\cdot|B| AB=AB,有 ∣ A B ∣ = ∣ B A ∣ |AB|=|BA| AB=BA

A为n阶方阵,k为正整数,则 ∣ A k ∣ = ∣ A ∣ k |A^k|=|A|^k Ak=Ak

扩展性质

A、B分别是m阶和n阶方阵,C为mxn矩阵,则
∣ A C O B ∣ = ∣ A ∣ ⋅ ∣ B ∣ \left| \begin{matrix} A & C \\ O & B \\ \end{matrix} \right|= |A|\cdot|B| AOCB=AB

∣ A O C B ∣ = ∣ A ∣ ⋅ ∣ B ∣ \left| \begin{matrix} A & O \\ C & B \\ \end{matrix} \right|= |A|\cdot|B| ACOB=AB

∣ O B A O ∣ = ( − 1 ) m n ∣ A O O B ∣ = ( − 1 ) m n ∣ A ∣ ⋅ ∣ B ∣ \left| \begin{matrix} O & B \\ A & O \\ \end{matrix} \right|= (-1)^{mn}\left| \begin{matrix} A & O \\ O & B \\ \end{matrix} \right|= (-1)^{mn}|A|\cdot|B| OABO=(1)mnAOOB=(1)mnAB

∣ O B A C ∣ = ( − 1 ) m n ∣ A ∣ ⋅ ∣ B ∣ \left| \begin{matrix} O & B \\ A & C \\ \end{matrix}\right|= (-1)^{mn}|A|\cdot|B| OABC=(1)mnAB

∣ D B A O ∣ = ( − 1 ) m n ∣ A ∣ ⋅ ∣ B ∣ \left| \begin{matrix} D & B \\ A & O \\ \end{matrix}\right|= (-1)^{mn}|A|\cdot|B| DABO=(1)mnAB

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值