行列式相关定理《线性代数》学习笔记)

行列式的余子式

    行列式去掉某一元素 a i j a_{ij} aij的所在行和所在列,剩余的子集仍然是行列式。我们通常称这个行列式为:余子式,记作 M i j M_{ij} Mij
    以三阶行列式为例:
∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ \begin{vmatrix}a_{11} & a_{12} & a_{13} \\a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} a11a21a31a12a22a32a13a23a33
    元素 a 11 a_{11} a11的余子式 M 11 M_{11} M11是去掉第一行、第一列后,剩余的子集:

M 11 = ∣ a 22 a 23 a 32 a 33 ∣ M_{11}=\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} M11=a22a32a23a33
小练习
在这里插入图片描述
    对于三角框中的元素“3”,其余子式可写作 M 14 = ∣ 1 1 1 2 2 3 5 5 6 ∣ M_{14}=\begin{vmatrix} 1 & 1&1 \\ 2 & 2& 3\\5&5&6 \end{vmatrix} M14=125125136

    对于圆形框中的元素“2”,其余子式可写作 M 32 = ∣ 1 0 3 1 1 1 5 6 6 ∣ M_{32}=\begin{vmatrix} 1 & 0&3 \\ 1 & 1& 1\\5&6&6 \end{vmatrix} M32=115016316


行列式的代数余子式

    简单来说,就是带符号的余子式。元素 a i j a_{ij} aij的代数余子式为 ( − 1 ) i + j × M i j (-1)^{i+j}×M_{ij} (1)i+j×Mij,符号记作 A i j A_{ij} Aij
    以三阶行列式为例:
∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ \begin{vmatrix}a_{11} & a_{12} & a_{13} \\a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} a11a21a31a12a22a32a13a23a33
    元素 a 11 a_{11} a

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值