实验室GPU计算资源使用方法

1 连接服务器

(1)方法一:使用CMD、Power Shell等软件连接到服务器,在终端中先输入ssh 用户名@IP地址,然后输入密码即可。

ssh hipeson@192.168.8.33

(2)方法二:使用Xshell连接服务器,需要进行如下配置即可。

在这里插入图片描述

2 上传代码和数据

(1)方法一:使用sftp(安全文件传送协议)进行文件传输。

sftp username@remote ip(or remote host name)
put /path/filename(本地主机) /path/filename(远端主机)
get /path/filename(远端主机) /path/filename(本地主机)

在这里插入图片描述
(2)方法二:使用lrzsz进行文件传输

首先安装lrzsz(已经安装)

# yum -y install lrzsz 

上传文件,执行命令rz,会跳出文件选择窗口,选择好文件,点击确认即可。

在这里插入图片描述

下载文件,执行命令sz。
在这里插入图片描述

3 执行训练和测试

(1)激活PyTorch GPU环境

source activate pytorch_gpu

在这里插入图片描述
(2)pytorch_gpu环境已经预装了大部分机器学习、深度学习、数字图像处理的包,可以根据需求安装对应的依赖包

pip install [包名]

在这里插入图片描述

(3)开启端到端的训练

python training.py

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值