chapter2随机过程的基本概念

分布函数的定义

对于给定的 [ X ( t 1 ) , X ( t 2 ) , . . . . . , X ( t n ) ] [X(t_1), X(t_2), .....,X(t_n)] [X(t1),X(t2),.....,X(tn)]的联合分布函数:
F ( t 1 , t 2 , ⋯   , t n ; x 1 , x 2 , ⋯   , x n ) = P { X ( t 1 ) ≤ x 1 , X ( t 2 ) ≤ x 2 , ⋯   , X ( t n ) ≤ x n } \begin{array}{l} F\left(t_{1}, t_{2}, \cdots, t_{n} ; x_{1}, x_{2}, \cdots, x_{n}\right)= \\ \quad P\left\{X\left(t_{1}\right) \leq x_{1}, X\left(t_{2}\right) \leq x_{2}, \cdots, X\left(t_{n}\right) \leq x_{n}\right\} \end{array} F(t1,t2,,tn;x1,x2,,xn)=P{X(t1)x1,X(t2)x2,,X(tn)xn}
称为过程的n维分布函数,记:
F ≜ { F ( t 1 , t 2 , ⋯   , t n ; x 1 , x 2 , … , x n ) : t i ∈ T , x i ∈ R i , i = 1 , 2 , ⋯   , n , n > 0 } \begin{aligned} F \triangleq &\left\{F\left(t_{1}, t_{2}, \cdots, t_{n} ; x_{1}, x_{2}, \ldots, x_{n}\right):\right.\\ &\left.t_{i} \in T, x_{i} \in R_{i}, i=1,2, \cdots, n, n>0\right\} \end{aligned} F{F(t1,t2,,tn;x1,x2,,xn):tiT,xiRi,i=1,2,,n,n>0}
称F为 X T X_T XT有限维分布函数族,在这个过程中,n维特征函数定义为:
φ ( t 1 , t 2 , ⋯   , t n ; θ 1 , θ 2 , ⋯   , θ n ) = E { e i [ θ 1 X ( t 1 ) + ⋯ + θ n X ( t n ) ] } 称 为 : { φ ( t 1 , t 2 , ⋯   , t n ; θ 1 , θ 2 , ⋯   , θ n ) : t 1 , t 2 , ⋯   , t n ∈ T , n ≥ 1 } \begin{array}{l} \varphi\left(t_{1}, t_{2}, \cdots, t_{n} ; \theta_{1}, \theta_{2}, \cdots, \theta_{n}\right) \\ \quad=E\left\{e^{i\left[\theta_{1} X\left(t_{1}\right)+\cdots+\theta_{n} X\left(t_{n}\right)\right]}\right\} \end{array} \\ 称为: \begin{array}{r} \left\{\varphi\left(t_{1}, t_{2}, \cdots, t_{\mathrm{n}} ; \theta_{1}, \theta_{2}, \cdots, \theta_{n}\right):\right. \\ \left.t_{1}, t_{2}, \cdots, t_{n} \in T, n \geq 1\right\} \end{array} φ(t1,t2,,tn;θ1,θ2,,θn)=E{ei[θ1X(t1)++θnX(tn)]}:{φ(t1,t2,,tn;θ1,θ2,,θn):t1,t2,,tnT,n1}
随机过程的有限维分布函数满足一下的两个性质:

对称性: F ( t j 1 , ⋯   , t j n ; x j 1 , ⋯   , x j n ) = F ( t 1 , t 2 , ⋯   , t n ; x 1 , x 2 , . . , x n ) F\left(t_{j_{1}}, \cdots, t_{j_{n}} ; x_{j_{1}}, \cdots, x_{j_{n}}\right)=F\left(t_{1}, t_{2}, \cdots, t_{n} ; x_{1}, x_{2}, . ., x_{n}\right) F(tj1,,tjn;xj1,,xjn)=F(t1,t2,,tn;x1,x2,..,xn)

相容性:对于任意固定的自然数m<n,均有:
F ( t 1 , t 2 , ⋯   , t m ; x 1 , x 2 , … , x m ) = F ( t 1 , t 2 , ⋯   , t m , ⋯   , t n ; x 1 , x 2 , … , x m , ∞ ⋯ ∞ ) = lim ⁡ x m + 1 , , x n → ∞ F ( t 1 , t 2 , ⋯   , t n ; x 1 , … , x m , ⋯ x n ) \begin{array}{l} F\left(t_{1}, t_{2}, \cdots, t_{m} ; x_{1}, x_{2}, \ldots, x_{m}\right) \\ \quad=F\left(t_{1}, t_{2}, \cdots, t_{m}, \cdots, t_{n} ; x_{1}, x_{2}, \ldots, x_{m}, \infty \cdots \infty\right) \\ \quad=\quad \lim _{x_{m+1},, x_{n} \rightarrow \infty} F\left(t_{1}, t_{2}, \cdots, t_{n} ; x_{1}, \ldots, x_{m}, \cdots x_{n}\right) \end{array} F(t1,t2,,tm;x1,x2,,xm)=F(t1,t2,,tm,,tn;x1,x2,,xm,)=limxm+1,,xnF(t1,t2,,tn;x1,,xm,xn)
注意:联合分布函数可以完全确定边缘分布函数!!!

题目:
设随机过程
X ( t ) = Y + Z t , t > 0 X(t)=Y+Z t, t>0 X(t)=Y+Zt,t>0
其中Y,Z相互独立,服从正态分布,求 X ( t ) X(t) X(t)的一,二维概率密度.
( Y z ) ∼ N ( 0 , I 2 ) X ( t ) = ( 1 t ) ( Y Z ) ∼ N ( 0 , 1 + t 2 ) ( X ( s ) , X ( t ) ) T = ( 1 s 1 t ) ( Y Z ) ∼ N ( 0 , Σ ) , 其中  Σ = ( 1 + s 2 1 + s t 1 + s t 1 + t 2 ) \left(\begin{array}{l} Y \\ z \end{array}\right) \sim N\left(0, I_{2}\right) \quad X(t)=\left(\begin{array}{ll} 1 & t \end{array}\right)\left(\begin{array}{l} Y \\ Z \end{array}\right) \sim N\left(0,1+t^{2}\right)\\ (X(s), X(t))^{T}=\left(\begin{array}{ll} 1 & s \\ 1 & t \end{array}\right)\left(\begin{array}{l} Y \\ Z \end{array}\right) \sim N(0, \Sigma) \text {, 其中 } \Sigma=\left(\begin{array}{cc} 1+s^{2} & 1+s t \\ 1+s t & 1+t^{2} \end{array}\right) (Yz)N(0,I2)X(t)=(1t)(YZ)N(0,1+t2)(X(s),X(t))T=(11st)(YZ)N(0,Σ)其中 Σ=(1+s21+st1+st1+t2)

随机过程的数字特征

定义一

给定随机过程 X T = X ( t ) , t ∈ T X_T ={X(t), t \in T} XT=X(t),tT,称
m ( t ) ≜ E [ X ( t ) ] = ∫ − ∞ + ∞ x d F ( t , x ) , t ∈ T m(t) \triangleq E[X(t)]=\int_{-\infty}^{+\infty} x d F(t, x), \quad t \in T m(t)E[X(t)]=+xdF(t,x),tT
为过程 X T 的 均 值 函 数 X_T的均值函数 XT

定义二:

给定随机过程 X T = X ( t ) , t ∈ T X_T ={X(t), t \in T} XT=X(t),tT,称
D ( t ) ≜ D [ X ( t ) ] = E [ X ( t ) − m ( t ) ] 2 D(t) \triangleq D[X(t)]=E[X(t)-m(t)]^{2} D(t)D[X(t)]=E[X(t)m(t)]2
为过程 X T X_T XT方差函数
 称  σ ( t ) = D ( t )  为过程  X T  的均方差函数.  \text { 称 } \sigma(t)=\sqrt{D(t)} \text { 为过程 } X_{T} \text { 的均方差函数. }   σ(t)=D(t)  为过程 XT 的均方差函数

定义三:

给定随机过程 X T = X ( t ) , t ∈ T X_T ={X(t), t \in T} XT=X(t),tT,称
C ( s , t ) ∧ Cov ⁡ ( X ( s ) , X ( t ) ) = E { [ X ( s ) − m ( s ) ] [ X ( t ) − m ( t ) ] } C(s, t)^{\wedge} \operatorname{Cov}(X(s), X(t))=E\{[X(s)-m(s)][X(t)-m(t)]\} C(s,t)Cov(X(s),X(t))=E{[X(s)m(s)][X(t)m(t)]}
为过程 X T X_T XT的协方差函数
C ( s , t ) = E ( X ( t ) X ( s ) ) − m ( s ) m ( t ) D ( t ) = C ( t , t ) = E [ X ( t ) − m ( t ) ] 2 \begin{array}{c} C(s, t)=E(X(t) X(s))-m(s) m(t) \\ D(t)=C(t, t)=E[X(t)-m(t)]^{2} \end{array} C(s,t)=E(X(t)X(s))m(s)m(t)D(t)=C(t,t)=E[X(t)m(t)]2

定义四

给定随机过程 X T = X ( t ) , t ∈ T , 称 R ( s , t ) ≜ E [ X ( s ) X ( t ) ] X_T= {X(t), t \in T},称 R(s, t) \triangleq E[X(s) X(t)] XT=X(t),tT,R(s,t)E[X(s)X(t)]
为过程 X T X_T XT的自相关函数

随机过程的分类

马尔可夫过程

定 义 随 机 过 程 { X ( t ) , t ∈ T } , 如 果 对 于 任 意 取 定 参 数 t 1 < t 2 < … < t n , 有 定义 随机过程 \{X(t), t \in T\} , 如果对于任意取定 参数 \boldsymbol{t}_{1}<\boldsymbol{t}_{2}<\ldots<t_{n} , 有 {X(t),tT},t1<t2<<tn,
P { X ( t n ) ≤ x n ∣ X ( t 1 ) = x 1 , X ( t 2 ) = x 2 , ⋯   , X ( t n − 1 ) = x n − 1 } = P { X ( t n ) ≤ x n ∣ X ( t n − 1 ) = x n − 1 } \begin{aligned} & P\left\{X\left(t_{n}\right) \leq x_{n} \mid X\left(t_{1}\right)=x_{1}, X\left(t_{2}\right)=x_{2}, \cdots, X\left(t_{n-1}\right)=x_{n-1}\right\} \\ =& P\left\{X\left(t_{n}\right) \leq x_{n} \mid X\left(t_{n-1}\right)=x_{n-1}\right\} \end{aligned} =P{X(tn)xnX(t1)=x1,X(t2)=x2,,X(tn1)=xn1}P{X(tn)xnX(tn1)=xn1}
{ X ( t ) , t ∈ T } \{X(t), t \in T\} {X(t),tT}为马氏过程
马尔科夫性:在已知系统现在所处状态下, 系统将来的演变与过去无关, 称为无后效性.等价于:
F ( x n ; t n ∣ x 1 , ⋯   , x n ; t 1 , ⋯   , t n − 1 ) = F ( x n ; t n ∣ x n − 1 ; t n − 1 ) F\left(x_{n} ; t_{n} \mid x_{1}, \cdots, x_{n} ; t_{1}, \cdots, t_{n-1}\right)=F\left(x_{n} ; t_{n} \mid x_{n-1} ; t_{n-1}\right) F(xn;tnx1,,xn;t1,,tn1)=F(xn;tnxn1;tn1)
若条件密度存在:
f ( x n ; t n ∣ x 1 , ⋯   , x n − 1 ; t 1 , ⋯   , t n − 1 ) = f ( x n ; t n ∣ x n − 1 ; t n − 1 ) f\left(x_{n} ; t_{n} \mid x_{1}, \cdots, x_{n-1} ; t_{1}, \cdots, t_{n-1}\right)=f\left(x_{n} ; t_{n} \mid x_{n-1} ; t_{n-1}\right) f(xn;tnx1,,xn1;t1,,tn1)=f(xn;tnxn1;tn1)

  1.  独立过程  { X ( t ) , t ∈ T }  是马氏过程;  \text { 独立过程 }\{X(t), t \in T\} \text { 是马氏过程; }  独立过程 {X(t),tT} 是马氏过程

证明:
证 1 ) 对 于 t 1 < t 2 < … < t n ∈ T , 因 X ( t 1 ) … X ( t n ) 相 互 独 立 , P { X ( t n ) < x n ∣ X ( t 1 ) = x 1 , X ( t 2 ) = x 2 , … , X ( t n − 1 ) = x n − 1 } = P { X ( t n ) < x n , X ( t 1 ) = x 1 , ⋯   , X ( t n − 1 ) = x n − 1 } P { X ( t 1 ) = x 1 , ⋯   , X ( t n − 1 ) = x n − 1 } = P { X ( t n ) < x n } = P { X ( t n ) < x n ∣ X ( t n − 1 ) = x n − 1 } 证 1) 对于 \boldsymbol{t}_{1}<\boldsymbol{t}_{2}<\ldots<\boldsymbol{t}_{n} \in \boldsymbol{T} , 因 X\left(t_{1}\right) \ldots X\left(t_{n}\right) 相互独立,\\ \begin{array}{l} P\left\{X\left(t_{n}\right)<x_{n} \mid X\left(t_{1}\right)=x_{1}, X\left(t_{2}\right)=x_{2}, \ldots, X\left(t_{n-1}\right)=x_{n-1}\right\} \\ =\frac{P\left\{X\left(t_{n}\right)<x_{n}, X\left(t_{1}\right)=x_{1}, \cdots, X\left(t_{n-1}\right)=x_{n-1}\right\}}{P\left\{X\left(t_{1}\right)=x_{1}, \cdots, X\left(t_{n-1}\right)=x_{n-1}\right\}} \\ =P\left\{X\left(t_{n}\right)<x_{n}\right\}=P\left\{X\left(t_{n}\right)<x_{n} \mid X\left(t_{n-1}\right)=x_{n-1}\right\} \end{array} 1t1<t2<<tnT,X(t1)X(tn),P{X(tn)<xnX(t1)=x1,X(t2)=x2,,X(tn1)=xn1}=P{X(t1)=x1,,X(tn1)=xn1}P{X(tn)<xn,X(t1)=x1,,X(tn1)=xn1}=P{X(tn)<xn}=P{X(tn)<xnX(tn1)=xn1}

泊松过程

定义一:如果取非负整数值的计数过程 { N ( t ) , t ≥ 0 } \{N(t), t \geq 0\} {N(t),t0}满足
(1) N(0) = 0
(2) 具有独立增量;
(3)  对任意  0 ≤ s < t , N ( t ) − N ( s )  服从参数为  λ ( t − s )  的泊松分布  \text { 对任意 } 0 \leq s<t, N(t)-N(s) \text { 服从参数为 } \lambda(t-s) \text { 的泊松分布 }  对任意 0s<t,N(t)N(s) 服从参数为 λ(ts) 的泊松分布 
P { N ( t ) − N ( s ) = k } = [ λ ( t − s ) ] k k ! e − λ ( t − s ) , k = 0 , 1 , 2 , ⋯ P\{N(t)-N(s)=k\}=\frac{[\lambda(t-s)]^{k}}{k !} e^{-\lambda(t-s)}, \quad k=0,1,2, \cdots P{N(t)N(s)=k}=k![λ(ts)]keλ(ts),k=0,1,2,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值