AI 也会 “撒谎”!DeepSeek 幻觉高发真相与破解方法

AI 幻觉,也被称为AI 虚构或 AI 编造,是指人工智能系统,尤其是像大型语言模型这类先进的 AI 技术,生成看似合理但实际上与事实严重不符或毫无根据的内容的现象。(一本正经的胡说八道)


AI 幻觉的 5 中类型

  1. 数据误用:有数据可用,但理解能力深度低,语境精确度高,外部信息整合能力高,逻辑推理和抽象能力中等。表现为误用已有数据,回答部分不符或细节错误 。

  2. 语境误解:有数据可用,理解能力深度高,语境精确度低,外部信息整合能力高,逻辑推理和抽象能力中等。表现为对问题意图理解错误,回答偏离主题。

  3. 信息缺失:无数据可用,理解能力深度中等,语境精确度高,外部信息整合能力低,逻辑推理和抽象能力中等。表现为未能正确获取或整合外部信息。

  4. 推理错误:部分数据可用,理解能力深度高,语境精确度高,外部信息整合能力中等,逻辑推理和抽象能力低。表现为逻辑推理存在漏洞或有错误假设。

  5. 无中生有:无数据可用,理解能力深度低,语境精确度中等,外部信息整合能力低,逻辑推理和抽象能力低。表现为在无数据支持下,生成完全虚构的信息。


AI 幻觉的 7 个特性


如何降低 DeepSeek“幻觉”

DeepSeek“幻觉”为什么高?

R1在强化学习阶段去掉了人工干预,减少了大模型为了讨好人类偏好而钻空子,但单纯的准确性信号反馈,或许让R1在文科类的任务中把“创造性”当成了更高优先级。

首先需要声明一下:DeepSeek-R1 产生幻觉的概率比其他模型高……为什么?

我们先看一个例子:

将问题:“strawberry里有几个r” 扔改大模型

豆包:

Claude:

天工:

智谱:

DeepSeek-R1:

深度思考了将近 2 分钟!

R1在数学相关的推理上极强,而在涉及到创意创造的领域非常容易胡编乱造。非常极端。

通过上面的例子我们可以看出,绝大多数大模型会回答“2个”。

因为这是模型之间互相“学习”传递的谬误,也说明了LLM的“黑盒子”境地,它看不到外部世界,甚至看不到单词中的最简单的字母。

而DeepSeek在经历了来回非常多轮长达100多秒的深度思考后,终于选择坚信自己推理出来的数字“3个”,战胜了它习得的思想钢印“2个”。

而这种强大的推理能力(CoT深度思考能力),是双刃剑。在与数学、科学真理无关的任务中,它有时会生成出一套自圆其说的“真理”,且捏造出配合自己理论的论据。

据腾讯科技,出门问问大模型团队前工程副总裁李维认为,R1比V3幻觉高4倍,有模型层的原因:
V3: query --〉answer
R1: query+CoT --〉answer

对于V3已经能很好完成的任务,比如摘要或翻译,任何思维链的长篇引导都可能带来偏离或发挥的倾向,这就为幻觉提供了温床。

降低幻觉的小技巧

如果是自己本地部署和自己训练数据,确保训练数据的高质量和多样性。

训练数据应做到标注来源、时效性和引用链,使用准确、权威的数据源,避免偏见和错误信息的引入。

此外,建立行业共享的“幻觉”黑名单库,杜绝使用可能会产生“幻觉”的内容。

使用的时候:

  • 提问要具体:别问"怎么做菜",要问"番茄炒蛋的步骤"
  • 像教小孩一样追问:当回答可疑时,继续问"这个数据是哪来的?"
  • 看它有没有"证据":靠谱的回答应该像论文一样标明参考来源

小技巧:

  1. 使用 DeepSeek 的时候,先不要开 r1,先使用普通模式和他进行几轮对话,然后再开 r1进行对话
  2. 在提示词中加上“让我们一步步思考”,就能生成chain-of-thought(CoT),提高推理的准确性,减少幻觉。
  3. RAG,也就是检索增强生成,是先从一个数据集中检索信息,然后指导内容生成。
  4. 如果发现DeepSeek有自己脑补的内容,就可以直接告诉它,“说你知道的就好,不用胡说”

DeepSeek 它像一位固执的天才,既能用缜密逻辑推翻谬误,又可能在无拘无束的想象中构建空中楼阁。

### DeepSeek 幻觉 错误 行为 及解决方案 #### 幻觉现象概述 DeepSeek在对话过程中可能出现幻觉现象,即模型可能会产生不真实的信息或自我认知错误。例如,在一次对话中,DeepSeek错误地自称为“ChatGPT”,这表明模型存在输出幻觉问题[^1]。 #### 影响分析 这种幻觉现象不仅影响用户体验,还可能带来潜在风险。特别是在心理咨询等敏感领域,如果模型将正常的悲伤情绪误判为病理性抑郁,则可能导致严重的误导性建议,进而对用户造成不良后果。 #### 技术成因探讨 从技术角度来看,幻觉现象通常源于训练数据的质量以及模型架构的设计缺陷。尽管DeepSeek基于强大的开源框架构建,并采用了宽松的MIT许可证发布,但这些因素并不能完全消除幻觉的发生可能性[^3]。 #### 解决策略 为了减少幻觉现象的影响,可以采取以下措施: - **增强监督机制**:通过引入更多高质量的人类反馈来调整模型参数,从而提高生成内容的真实性。 ```python def adjust_model_parameters(feedback_data, model): adjusted_params = model.optimize_with_feedback(feedback_data) return adjusted_params ``` - **增加事实核查模块**:开发专门的事实验证工具,在每次响应前自动检查信息准确性,防止虚假陈述传播。 ```python def verify_information(response_text, fact_checker_api_key): verification_result = requests.post( url="https://api.factchecker.com/verify", headers={"Authorization": f"Bearer {fact_checker_api_key}"}, json={"text": response_text} ) return verification_result.json() ``` - **优化提示工程**:精心设计输入指令,引导模型更加专注于特定主题范围内的讨论,降低偏离正轨的概率。 ```python def generate_precise_prompt(topic_keywords, context_history): prompt_template = "Given the following keywords and conversation history:\n{keywords}\n\nContext:{context}" precise_prompt = prompt_template.format(keywords=", ".join(topic_keywords), context="\n".join(context_history)) return precise_prompt ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我:yueda

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值