卡特兰数


1 卡特兰数五大求解方式

  1. f n = 1 n + 1 C 2 n n f_{n}= \frac{1}{n+1}C_{2n}^{n} fn=n+11C2nn
  2. f n = C 2 n n − C 2 n n − 1 f_{n}=C_{2n}^{n}-C_{2n}^{n-1} fn=C2nnC2nn1
  3. f n = 1 n + 1 ∑ i = 0 n ( C n i ) 2 f_{n}= \frac{1}{n+1} \sum_{i=0}^{n}{(C_{n}^{i})}^{2} fn=n+11i=0n(Cni)2
  4. f 0 = 1 , f n = 2 ( 2 n − 1 ) n + 1 f n − 1 f_{0}=1,f_{n}= \frac{2(2n-1)}{n+1}f_{n-1} f0=1,fn=n+12(2n1)fn1
  5. f 0 = 1 , f n = ∑ i = 0 n − 1 f n − i − 1 f i f_{0}=1,f_{n}= \sum_{i=0}^{n-1}f_{n-i-1}f_{i} f0=1,fn=i=0n1fni1fi

2 高精度卡特兰数

  直接根据 f n = 1 n + 1 C 2 n n = ( 2 n ) ! n ! ( n + 1 ) ! f_{n}= \frac{1}{n+1}C_{2n}^{n}= \frac{(2n)!}{n!(n+1)!} fn=n+11C2nn=n!(n+1)!(2n)!求解高精度卡特兰数。
  先用欧拉筛法求出所有的质数,然后对阶乘进行因式分解(勒让德定理),再得出卡特兰数的因式分解,最后根据因式分解求解卡特兰数。

2.1 时间复杂度分析

  欧拉筛法的时间复杂度为 O ( n ) \mathcal{O}(n) O(n),因式分解的时间复杂度为 O ( n l o g ( n ) ) \mathcal{O}(nlog(n)) O(nlog(n)),根据因式分解求解卡特兰数的时间复杂度为 O ( n 2 l o g ( n ) ) \mathcal{O}(n^{2}log(n)) O(n2log(n)),所以时间复杂度为 O ( n 2 l o g ( n ) ) \mathcal{O}(n^{2}log(n)) O(n2log(n))

2.2 实现

#include<iostream>
#include<cstdio>
using namespace std;
const int N=1e3+10;
int n,prime[N],cnt,vis[N*2],repeat[N],Catalan_number[N],len;
void multiply(int base_number,int exponent){   //乘上x^sum
    while(exponent--){
        for(int i=1;i<=len;++i) Catalan_number[i]*=base_number;
        for(int i=1;i<=len;++i){
            if(Catalan_number[i]>=10){
                Catalan_number[i+1]+=Catalan_number[i]/10;
                Catalan_number[i]%=10;
                if(i+1>len) len++;
            }
        }
    }
}
int FOF(int num,int prime){   //求num的阶乘有多少的prime因数
    int sum=0;
    while(num) num/=prime,sum+=num;
    return sum;
}
int main(){
    scanf("%d",&n);
    vis[0]=vis[1]=1;
    cnt=0;
    for(int i=2;i<=2*n;++i){   //筛选出1到2n的质数(欧拉筛法)
        if(!vis[i]) prime[++cnt]=i;
        for(int j=1;j<=cnt&&prime[j]*i<=2*n;++j){
            vis[i*prime[j]]=1;
            if(i%prime[j]==0) break;
        }
    }
    for(int i=1;i<=cnt;++i){   //对卡特兰数分解质因数,因为卡特兰数可以表达为 (2*n)!/ [n!*(n+1)!]
        repeat[i]=FOF(2*n,prime[i])-FOF(n,prime[i])-FOF(n+1,prime[i]);   //求出有多少个prime[i]因数
    }
    Catalan_number[1]=1,len=1;
    for(int i=1;i<=cnt;++i){     //通过质因数的幂相乘得到卡特兰数
        if(repeat[i]){
            multiply(prime[i],repeat[i]);
        }
    }
    for(int i=len;i>=1;i--) printf("%d",Catalan_number[i]);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值