参考:Wandb——Pytorch模型指标可视化及超参搜索_鹿枫的博客-CSDN博客_pytorch 超参数搜索
自己做记录使用,打字一遍,更容易理解~ 希望大家去看原作者!
1 介绍
Wandb = "Weight" and "bias" 权重和偏执;
是一款提供给开发人员更好更快的构建机器学习模型的平台;
轻量化、可交互、追踪版本、迭代数据集、评估模型性能、重现性能、可视化结果、点回归;
作用:
保存训练运行中使用的超参数;
搜索、比较和可视化训练的运行;
在运行的同时分析系统硬件的情况如:CPU和GPU使用率;
永远保存可用的实验记录;
在团队中分享训练数据;
Dashboard:记录实验过程、将结果可视化;
Reports:保存和分享可复制的成果/结论;
Sweeps:通过改变超参数来优化模型;
Artifacts:可以自己搭建pipline实现保存储存数据集和模型以及评估结果的流程。
2 相关网址:
wandb官网:https://wandb.ai/site
wandb中文文档:https://docs.wandb.ai/v/zh-hans/
常见报错及解决:https://docs.wandb.ai/guides/sweeps/faq
模型参数可视化colab示例:http://wandb.me/pytorch-colab
3 代码使用方法
基本接口:
wandb.init — 在训练脚本开头初始化一个新的运行项;
wandb.config — 跟踪超参数;
wandb.log — 在训练循环中持续记录变化的指标;
wandb.save — 保存运行项相关文件,如模型权值;
wandb.restore — 运行指定运行项时,恢复代码状态。
对于Any framework,使用wandb的代码如下:
# Flexible integration for any Python script
# 可灵活集成任何Python脚本
import wandb
# 1. Start a W&B run 开始运行
wandb.init(project='gpt3')
# 2. Save model inputs and hyperparameters 保存模型输入和超参数
config = wandb.config
config.learning_rate = 0.01
# Model training here 模型训练在这里
# 3. Log metrics over time to visualize performance 随着时间的推移记录度量以可视化性能
wandb.log({"loss": loss})
4 结合含有模型的项目步骤
代码大致可分为以下步骤:
①导包;
②初始化一个项目;
③设置参数;
④设定好模型和数据集;
⑤追踪模型参数并记录;
⑥储存模型;
step 0:
引入一些后续需要使用的包并初始化设备是GPU还是CPU:
import os
import random
import numpy as np
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from tqdm.notebook import tqdm
import wandb
# Device configuration
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
step 1:
初始化模型的一些参数
config = dict(
epochs=5,
classes=10,
kernels=[16, 32],
batch_size=128,
learning_rate=0.005,
dataset="MNIST",
architecture="CNN")
step 2:
定义整个流程
def model_pipeline(hyperparameters):
# tell wandb to get started 告诉wandb开始
with wandb.init(project="pytorch-demo", config=hyperparameters):
# access all HPs through wandb.config, so logging matches execution! 通过wandb访问所有配置,以便日志记录匹配执行!
config = wandb.config
# make the model, data, and optimization problem 制定模型、数据和优化问题
model, train_loader, test_loader, criterion, optimizer = make(config)
print(model)
# and use them to train the model 用它们来训练模型
train(model, train_loader, criterion, optimizer, config)
# and test its final performance 并测试其最终性能
test(model, test_loader)
return model
step 3:
定义一些具体的函数
数据集预处理:
def get_data(slice=5, train=True):
full_dataset = torchvision.datasets.MNIST(root=".",
train=train,
transform=transforms.ToTensor(),
download=True)
# equiv to slicing with [::slice]
sub_dataset = torch.utils.data.Subset(
full_dataset, indices=range(0, len(full_dataset), slice))
return sub_dataset
def make_loader(dataset, batch_size):
loader = torch.utils.data.DataLoader(dataset=dataset,
batch_size=batch_size,
shuffle=True,
pin_memory=True, num_workers=2)
return loader
step 4:定义模型类 :
# Conventional and convolutional neural network
class ConvNet(nn.Module):
def __init__(self, kernels, classes=10):
super(ConvNet, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(1, kernels[0], kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.layer2 = nn.Sequential(
nn.Conv2d(16, kernels[1], kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.fc = nn.Linear(7 * 7 * kernels[-1], classes)
def forward(self, x):
out = self.layer1(x)
out = self.layer2(out)
out = out.reshape(out.size(0), -1)
out = self.fc(out)
return out
step 5:定义数据集、模型;
def make(config):
# Make the data
train, test = get_data(train=True), get_data(train=False)
train_loader = make_loader(train, batch_size=config.batch_size)
test_loader = make_loader(test, batch_size=config.batch_size)
# Make the model
model = ConvNet(config.kernels, config.classes).to(device)
# Make the loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(
model.parameters(), lr=config.learning_rate)
return model, train_loader, test_loader, criterion, optimizer
step 6:定义训练记录日志:
def train_log(loss, example_ct, epoch):
# Where the magic happens
wandb.log({"epoch": epoch, "loss": loss}, step=example_ct)
print(f"Loss after " + str(example_ct).zfill(5) + f" examples: {loss:.3f}")
step 7:模型训练:
def train(model, loader, criterion, optimizer, config):
# Tell wandb to watch what the model gets up to: gradients, weights, and more!
# 告诉wandb观察模型达到了什么:梯度、权重等!
wandb.watch(model, criterion, log="all", log_freq=10)
# Run training and track with wandb 跑步训练和用wandb跟踪
total_batches = len(loader) * config.epochs
example_ct = 0 # number of examples seen
batch_ct = 0
for epoch in tqdm(range(config.epochs)):
for _, (images, labels) in enumerate(loader):
loss = train_batch(images, labels, model, optimizer, criterion)
example_ct += len(images)
batch_ct += 1
# Report metrics every 25th batch 每25批次报告指标
if ((batch_ct + 1) % 25) == 0:
train_log(loss, example_ct, epoch)
def train_batch(images, labels, model, optimizer, criterion):
images, labels = images.to(device), labels.to(device)
# Forward pass ➡
outputs = model(images)
loss = criterion(outputs, labels)
# Backward pass ⬅
optimizer.zero_grad()
loss.backward()
# Step with optimizer
optimizer.step()
return loss
step 8:记录测试集上的日志:
def test(model, test_loader):
model.eval()
# Run the model on some test examples
with torch.no_grad():
correct, total = 0, 0
for images, labels in test_loader:
images, labels = images.to(device), labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f"Accuracy of the model on the {total} " +
f"test images: {100 * correct / total}%")
wandb.log({"test_accuracy": correct / total})
# Save the model in the exchangeable ONNX format 将模型保存为可交换的ONNX格式
torch.onnx.export(model, images, "model.onnx")
wandb.save("model.onnx")
step 9:定义模型训练测试的参数:
config = dict(
epochs=5,
classes=10,
kernels=[16, 32],
batch_size=128,
learning_rate=0.005,
dataset="MNIST",
architecture="CNN")
step 10: 运行函数显示所有的记录过的指标
# Build, train and analyze the model with the pipeline
model = model_pipeline(config)