1、Deep Graph Infomax
参考文献:Deep graph infomax[J]. ICLR (Poster), 2019, 2(3): 4.
本文提出了一个非随机游走的,基于互信息最大化的自监督图学习通用框架。方法部分和 Deep InfoMax 类似,上图中 为 GNN Encoder,根据图结构将节点编码为H,节点表示经过一个 Read-out 函数可汇总为图表示向量
。同时,我们对原图进行扰动,并将扰动过的图经过相同的 GNN Encoder 得到扰动后的节点向量
。通过 DecoderD,我们应使图表示
与原图的节点表示H更接近,并使图表示
与扰动图的节点表示
更疏远。注意本工作是将图表示与节点表示做对比,是 Node-Graph 模式的。
2、Graph Contrastive Learning with Augmentations(NeurIPS 2020)
首先随机采样一个 batch 的图,之后对每个图进行两次随机的数据增强,增强得到的图数据被称为 View,此后这个 batch 中由的 View 组成。这样同一个 batch 中,由相同的图增强得到的 View 互相之间为正例,不同的图增强得到的 View 互相之间为负例。对一个 batch 内的 View 均过一下 GNN Encoder(上图中的
),得到节点的表示向量
等。再经过非线形映射层g后,得到的图表示向量之间即可根据先前约定的正负例关系,计算对比学习的损失函数。在经过自监督的训练后,GNN Encoder 被保留,而非线形映射层被遗弃。
本文的对比学习的框架并无大的创新,重点在于讨论如何对图数据做数据增强。本文提出了四种图数据增强的方法,具体而言:
-
Node Dropping:随机删除图中的节点及与之相连的边;
-
Edge Perturbation:随机增加 / 删除图中一定比例的边;
-
Attribute Masking:随机 Mask 节点的属性;
-
Subgraph:使用随机游走算法得到的子图(假设图的语义信息可以较大程度上被局部结构保留);
本文也对这四种图数据增强策略的使用进行了讨论。(1)图数据增强策略的选择对图对比学习至关重要;(2)组合多种合适的图数据增强策略可以达到更好的效果;(3)对边的扰动(Edge Perturbation)对社交网络图有益,但会损害化学分子图(由于分子图中化学键对分子性质起重要作用);(4)稠密图中 Attribute Masking 效果更好;(5)一般而言,Node Dropping 和 Subgraph 都可以起到比较好的效果。
3、Contrastive Multi-View Representation Learning on Graphs(ICML2020)
本文提出的方法在框架上与 DGI (Node-Graph 对比的模式)和 SimCLR(同一张图增强出两个 View)类似,主要创新点在于提出 Diffusion 这种数据增强方法,以及经验化地分析了图对比学习的一些实验 Trick。
图数据增强方面,主要分为特征层面和结构层面两种。特征层面的数据增强方法主要为随机 Mask 特征,以及加入高斯噪声;结构层面的数据增强主要包括增加或删除边、采样子图、或者产生全局层面的 View(Global View)。本工作的主要创新则集中在 Global View 上。文中的Global View 即是将离散的邻接矩阵稠密化,对邻接矩阵进行重新赋值,任意两点之间都可以有一个浮点数值,两点联系的密切程度。一种平凡的方式是将两点之间的值设为图上的最短距离;更普适性的方式则沿用 NeurIPS 2019 的工作,使用 Diffusion操作。Diffusion 也包含多种方式,如 Personalized PageRank (PPR) 或 heat kernel。详细推导请参考原文。本文实验中发现 PPR 方式的 Diffusion 效果最好。
本文还通过大量实验,给出了若干图对比学习的经验性结论。(1)多于 2 个的 View 对效果几乎没有提升,只用两个 View 即可;(2)只做 Node-Graph 模式的对比,效果要优于 Graph-Graph 的对比,或者多种对比方式混合;(3)对于由节点表示产生图表示的过程,简单的 Readout 函数要优于参数化的 Pooling 层;(4)正则 (regularization)和标准化(normalization)往往会产生负面影响。