图对比学习三篇顶会论文

1、Deep Graph Infomax

参考文献:Deep graph infomax[J]. ICLR (Poster), 2019, 2(3): 4.

本文提出了一个非随机游走的,基于互信息最大化的自监督图学习通用框架。方法部分和 Deep InfoMax 类似,上图中 为 GNN Encoder,根据图结构将节点编码为H,节点表示经过一个 Read-out 函数可汇总为图表示向量。同时,我们对原图进行扰动,并将扰动过的图经过相同的 GNN Encoder 得到扰动后的节点向量。通过 DecoderD,我们应使图表示与原图的节点表示H更接近,并使图表示与扰动图的节点表示更疏远。注意本工作是将图表示与节点表示做对比,是 Node-Graph 模式的。

2、Graph Contrastive Learning with Augmentations(NeurIPS 2020

 首先随机采样一个 batch 的图,之后对每个图进行两次随机的数据增强,增强得到的图数据被称为 View,此后这个 batch 中由的 View 组成。这样同一个 batch 中,由相同的图增强得到的 View 互相之间为正例,不同的图增强得到的 View 互相之间为负例。对一个 batch 内的 View 均过一下 GNN Encoder(上图中的),得到节点的表示向量等。再经过非线形映射层g后,得到的图表示向量之间即可根据先前约定的正负例关系,计算对比学习的损失函数。在经过自监督的训练后,GNN Encoder 被保留,而非线形映射层被遗弃。

本文的对比学习的框架并无大的创新,重点在于讨论如何对图数据做数据增强。本文提出了四种图数据增强的方法,具体而言:

  • Node Dropping:随机删除图中的节点及与之相连的边;

  • Edge Perturbation:随机增加 / 删除图中一定比例的边;

  • Attribute Masking:随机 Mask 节点的属性;

  • Subgraph:使用随机游走算法得到的子图(假设图的语义信息可以较大程度上被局部结构保留);

本文也对这四种图数据增强策略的使用进行了讨论。(1)图数据增强策略的选择对图对比学习至关重要;(2)组合多种合适的图数据增强策略可以达到更好的效果;(3)对边的扰动(Edge Perturbation)对社交网络图有益,但会损害化学分子图(由于分子图中化学键对分子性质起重要作用);(4)稠密图中 Attribute Masking 效果更好;(5)一般而言,Node Dropping 和 Subgraph 都可以起到比较好的效果。

3、Contrastive Multi-View Representation Learning on Graphs(ICML2020)

本文提出的方法在框架上与 DGI (Node-Graph 对比的模式)和 SimCLR(同一张图增强出两个 View)类似,主要创新点在于提出 Diffusion 这种数据增强方法,以及经验化地分析了图对比学习的一些实验 Trick。

图数据增强方面,主要分为特征层面结构层面两种。特征层面的数据增强方法主要为随机 Mask 特征,以及加入高斯噪声;结构层面的数据增强主要包括增加或删除边、采样子图、或者产生全局层面的 View(Global View)。本工作的主要创新则集中在 Global View 上。文中的Global View 即是将离散的邻接矩阵稠密化,对邻接矩阵进行重新赋值,任意两点之间都可以有一个浮点数值,两点联系的密切程度。一种平凡的方式是将两点之间的值设为图上的最短距离;更普适性的方式则沿用 NeurIPS 2019 的工作,使用 Diffusion操作。Diffusion 也包含多种方式,如 Personalized PageRank (PPR) 或 heat kernel。详细推导请参考原文。本文实验中发现 PPR 方式的 Diffusion 效果最好。

本文还通过大量实验,给出了若干图对比学习的经验性结论。(1)多于 2 个的 View 对效果几乎没有提升,只用两个 View 即可;(2)只做 Node-Graph 模式的对比,效果要优于 Graph-Graph 的对比,或者多种对比方式混合;(3)对于由节点表示产生图表示的过程,简单的 Readout 函数要优于参数化的 Pooling 层;(4)正则 (regularization)和标准化(normalization)往往会产生负面影响。

### 如何在AI会上发表强化学习论文 要在级会议上成功发表关于强化学习的研究成果,研究者需要关注以下几个方面: #### 1. **选题的重要性** 选择具有创新性和实际应用价值的主题至关重要。例如,在NIPS-2020上接受的一篇论文讨论了基于梯度的学习者的逆向强化学习方法[^1]。这类主题不仅展示了技术上的突破,还体现了其潜在的实际应用场景。 #### 2. **实验设计与验证** 高质量的实验设计能够有效证明所提方法的有效性。以一篇UC Berkeley和Google Research合作的文章为例,该文章通过强化学习学习量化布尔公式的启发式算法[^2]。这表明详细的实验设置以及对比分析对于展示研究成果的重要性。 #### 3. **实现细节的关注** 即使是最先进的算法也需要仔细考虑其实现细节。正如某项研究表明,在深度强化学习中,PPO(近端策略优化)和TRPO(信任区域策略优化)的具体实施方式对其性能有着显著影响[^3]。因此,提供清晰、可复制的代码和技术文档是非常重要的。 #### 4. **跨领域融合的趋势** 当前趋势显示,越来越多的工作正在探索不同领域的交叉点。比如有一篇文章探讨了利用强化学习改进共享账户跨域顺序推荐系统[^4]。这种类型的跨学科工作往往能吸引更广泛的关注并增加被接收的可能性。 #### 5. **撰写规范且有吸引力的手稿** 最后但同样重要的是,手稿本身的质量也决定了它能否脱颖而出。确保写作逻辑严谨、结构合理,并突出贡献部分;同时附带详尽的结果图表支持论述内容。 ```python # 示例:简单的Q-learning伪代码作为基础理解的一部分 def q_learning(env, num_episodes, discount_factor=1.0, alpha=0.5, epsilon=0.1): Q = defaultdict(lambda: np.zeros(env.action_space.n)) for i_episode in range(num_episodes): state = env.reset() while True: action = choose_action(state, Q[state], epsilon) next_state, reward, done, _ = env.step(action) best_next_action = np.argmax(Q[next_state]) td_target = reward + discount_factor * Q[next_state][best_next_action] Q[state][action] += alpha * (td_target - Q[state][action]) if done: break state = next_state return Q ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值