numpy抽样函数 np.random.choice用法详解

本文详细介绍了Python numpy库中的random.choice函数,用于从给定数组中进行随机抽样。该函数支持指定抽样大小、是否允许重复以及自定义抽样概率。示例中展示了如何从列表中按不同概率抽取元素,以及在不允许重复抽样时的操作。此外,当输入为整数时,它会生成指定范围内的随机整数。
摘要由CSDN通过智能技术生成

顾名思义,抽样函数,定义如下:

def choice(a, size=None, replace=True, p=None):

参数说明:

a :待抽样的样本(一维数组或整数)
size: 输出大小,默认返回单个元素
replace : 抽样后的元素是否可重复,默认是
p: 每个样本点被抽样的概率,默认均匀抽样

举例如下:

从[1,2,3,4,5]中随机抽三个元素,可重复,概率分别为[0.1,0.1,0.2,0.1,0.5]

>>> a=[1,2,3,4,5]
>>> p=[0.1,0.1,0.2,0.1,0.5]
>>> np.random.choice(a,3,True,p)
array([5, 2, 5])

元素不可重复(即第三个参数replace设为false):

>>> np.random.choice(a,3,False,p)
array([2, 3, 5])

若输入a为整型,则表示从0到a-1中的整数样本进行抽样,如:

>>> np.random.choice(5,3,True)
array([4, 1, 3])
>>> np.random.choice(5,3,True)
array([0, 4, 2])

第二个参数size不设置,则只返回单个元素,如:

>>> np.random.choice(5)
2
>>> np.random.choice(5)
1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值