主要参考官网:https://docs.openvinotoolkit.org/latest/openvino_docs_install_guides_installing_openvino_linux.html
OpenVINO下载
首先找到对应的版本下载安装:https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit/download.html?operatingsystem=linux&distributions=webdownload&version=2021%201
我这里下载的版本是 2020.4
版 如下图所示:
OpenVINO安装
解压:
tar -xvzf l_openvino_toolkit_p_2020.4.287.tgz
进入文件夹:
cd l_openvino_toolkit_p_2020.4.287
如果之前有安装过OpenVINO,需要删除或者重命名以下这两个文件夹:
~/inference_engine_samples_build
~/openvino_models
没安装过的这里提供了两个安装方式:
注意二选一
- GUI 图像界面安装:(推荐,简单直观)
sudo ./install_GUI.sh
- 命令行安装:
sudo ./install.sh
图像界面如下所示(我这里用的2021.3演示的):
一路next
,很快就安装成功了。一般是默认安装在目录/opt/Intel/
下:
(base) inbc@ubuntu:/opt/intel$ ls
intel_sdp_products.db mediasdk openvino openvino_2020.4.287
(base) inbc@ubuntu:/opt/intel$
安装外部软件依赖:
进入目录:
cd /opt/intel/openvino/install_dependencies
执行命令:
sudo -E ./install_openvino_dependencies.sh
设置环境变量
主要参考:https://zhuanlan.zhihu.com/p/55635163
这样就初步安装好了,然后需要添加环境变量,下次启动terminal自动生效;如想立即生产,直接执行对应命令即可:
source /opt/intel/openvino/bin/setupvars.sh
echo source /opt/intel/openvino/bin/setupvars.sh >> ~/.bashrc
模型优化器配置步骤
安装深度学习框架依赖,「如果前期安装使用sudo
,执行这些脚本也需要sudo
:
进入目录:
cd /opt/intel/openvino/deployment_tools/model_optimizer/install_prerequisites
执行以下命令全部安装:
./install_prerequisites.sh
或者按需求安装
./install_prerequisites_caffe.sh
./install_prerequisites_tf.sh
./install_prerequisites_mxnet.sh
./install_prerequisites_onnx.sh
./install_prerequisites_kaldi.sh
OpenVINO测试
进入目录:
cd /opt/intel/openvino/deployment_tools/demo
执行命令:
./demo_squeezenet_download_convert_run.sh
出现以下情况则表明安装成功了:(如果没有安装成功,没有关系,请看看下面的踩坑案例,或许对你有些帮助)
然后在运行:
./demo_security_barrier_camera.sh
如果出现以下这张图,那么恭喜你,安装成功!!!
本人安装踩的坑:
参考:https://blog.csdn.net/kan2016/article/details/108203139
在执行
./demo_squeezenet_download_convert_run.sh
命令时出现以下错误:
打开/home/inbc/openvino_models/ir/public/squeezenet1.1/FP16/
目录,果然发现没有squeezenet1.1.xml
这个文件,可能是网络问题,没有下载下来,解决方法就是手动生成这个文件并添加到该目录下。
切换到model_optimizer
目录下用mo_caffe.py
去做模型优化:
cd /opt/intel/openvino/deployment_tools/model_optimizer
sudo ./mo_caffe.py --input_model /home/inbc/openvino_models/models/public/squeezenet1.1/squeezenet1.1.caffemodel --output_dir ~/Downloads/
执行后得到如下图所示的squeezenet1.1.bin
和squeezenet1.1.xml
两个文件,放到就/home/inbc/openvino_models/ir/public/squeezenet1.1/FP16/
目录下就可以使用了,测试效果如上面验证效果相同。