ubuntu18安装OpenVINO

本文详细指导了如何从官网下载并安装OpenVINO 2020.4版本,包括GUI和命令行安装方法,以及后续的依赖安装、环境变量设置和模型优化过程。遇到squeezenet1.1.xml缺失的问题也给出了解决方案。
摘要由CSDN通过智能技术生成

主要参考官网:https://docs.openvinotoolkit.org/latest/openvino_docs_install_guides_installing_openvino_linux.html

OpenVINO下载

首先找到对应的版本下载安装:https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit/download.html?operatingsystem=linux&distributions=webdownload&version=2021%201
我这里下载的版本是 2020.4版 如下图所示:
在这里插入图片描述

OpenVINO安装

解压:

tar -xvzf l_openvino_toolkit_p_2020.4.287.tgz

进入文件夹:

cd l_openvino_toolkit_p_2020.4.287

如果之前有安装过OpenVINO,需要删除或者重命名以下这两个文件夹:

~/inference_engine_samples_build
~/openvino_models

没安装过的这里提供了两个安装方式:

注意二选一

  1. GUI 图像界面安装:(推荐,简单直观)
sudo ./install_GUI.sh
  1. 命令行安装:
 sudo ./install.sh

图像界面如下所示(我这里用的2021.3演示的):
在这里插入图片描述
一路next,很快就安装成功了。一般是默认安装在目录/opt/Intel/下:

(base) inbc@ubuntu:/opt/intel$ ls
intel_sdp_products.db  mediasdk  openvino  openvino_2020.4.287
(base) inbc@ubuntu:/opt/intel$ 

安装外部软件依赖:

进入目录:

cd /opt/intel/openvino/install_dependencies

执行命令:

sudo -E ./install_openvino_dependencies.sh

设置环境变量

主要参考:https://zhuanlan.zhihu.com/p/55635163
这样就初步安装好了,然后需要添加环境变量,下次启动terminal自动生效;如想立即生产,直接执行对应命令即可:

source /opt/intel/openvino/bin/setupvars.sh
echo source /opt/intel/openvino/bin/setupvars.sh >> ~/.bashrc

模型优化器配置步骤

安装深度学习框架依赖,「如果前期安装使用sudo,执行这些脚本也需要sudo
进入目录:

cd /opt/intel/openvino/deployment_tools/model_optimizer/install_prerequisites

执行以下命令全部安装:

./install_prerequisites.sh

或者按需求安装

./install_prerequisites_caffe.sh
./install_prerequisites_tf.sh
./install_prerequisites_mxnet.sh
./install_prerequisites_onnx.sh
./install_prerequisites_kaldi.sh

OpenVINO测试

进入目录:

cd /opt/intel/openvino/deployment_tools/demo

执行命令:

./demo_squeezenet_download_convert_run.sh

出现以下情况则表明安装成功了:(如果没有安装成功,没有关系,请看看下面的踩坑案例,或许对你有些帮助)
在这里插入图片描述
然后在运行:

./demo_security_barrier_camera.sh

如果出现以下这张图,那么恭喜你,安装成功!!!
在这里插入图片描述

本人安装踩的坑:

参考:https://blog.csdn.net/kan2016/article/details/108203139
在执行

./demo_squeezenet_download_convert_run.sh

命令时出现以下错误:
在这里插入图片描述
打开/home/inbc/openvino_models/ir/public/squeezenet1.1/FP16/目录,果然发现没有squeezenet1.1.xml这个文件,可能是网络问题,没有下载下来,解决方法就是手动生成这个文件并添加到该目录下。

切换到model_optimizer目录下用mo_caffe.py去做模型优化:

cd /opt/intel/openvino/deployment_tools/model_optimizer
sudo ./mo_caffe.py  --input_model /home/inbc/openvino_models/models/public/squeezenet1.1/squeezenet1.1.caffemodel --output_dir  ~/Downloads/

执行后得到如下图所示的squeezenet1.1.binsqueezenet1.1.xml两个文件,放到就/home/inbc/openvino_models/ir/public/squeezenet1.1/FP16/目录下就可以使用了,测试效果如上面验证效果相同。
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

iNBC

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值