pytorch之torch.save()和torch.load()方法详细说明

        torch.save()和torch.load()是PyTorch中用于模型保存和加载的函数。它们提供了一种方便的方式来保存和恢复模型的状态、结构和参数。可以使用它们来保存和加载整个模型或其他任意的Python对象,并且可以在加载模型时指定目标设备。

1.语法介绍

1.1 torch.save()语法

        torch.save()函数用于将PyTorch模型保存到磁盘上的文件中,以便以后可以重新加载和使用。它的基本语法如下:

torch.save(obj, f, pickle_module=<module 'pickle' from '...'>, pickle_protocol=2)

        参数说明:

                obj是要保存的对象,通常是一个模型的状态字典(state_dict())。

                f是文件的路径或文件对象,用于存储模型。

                pickle_module是用于序列化的Python模块,默认为pickle。

                pickle_protocol是序列化时使用的协议版本,默认为2。

1.2 torch.load()语法

        torch.load()函数用于从磁盘上的文件加载保存的模型。它的基本语法如下:

torch.load(f, map_location=None, pickle_module=<module 'pickle' from '...'>)
`torch.save` 是 PyTorch 中用于序列化持久化模型及张量的函数。它可以将一个 Python 对象保存到硬盘上,对象通常是一个 PyTorch `Tensor`,或者是一个模型对象(即一个包含可训练参数的 `nn.Module` 类实例)。保存的对象可以使用 `torch.load` 进行反序列化,这样就可以在之后重新加载模型或张量到内存中。 ```python import torch # 保存张量 tensor = torch.tensor([1, 2, 3]) torch.save(tensor, 'tensor.pt') # 保存模型 model = torch.nn.Linear(3, 4) torch.save(model.state_dict(), 'model_weights.pt') ``` `torch.export.save` 不是 PyTorch 的一个内置函数。可能你指的是 `torch.save` 或者是 PyTorch 的导出功能(例如 TorchScript 或者 ONNX),这些功能用于将模型转换为可以在不同环境中运行的格式。例如,TorchScript 允许将模型转换为 TorchScript 格式,这样就可以在没有 Python 依赖的环境中运行模型。 ```python # 使用 TorchScript 导出模型 model = torch.jit.trace(model, example_input) model.save('model_scripted.pt') ``` 或者,使用 ONNX 导出模型,使其可以在支持 ONNX 的推理引擎上运行: ```python # 导出模型为 ONNX 格式 input_sample = torch.randn((1, 3, 224, 224)) torch.onnx.export(model, input_sample, "model.onnx") ``` 在使用这些功能时,重要的是要理解你正在导出的模型需要在什么环境下运行,以及模型的输入输出接口是否与导出格式兼容。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值