[论文阅读] DMNet: Difference Minimization Network for Semi-supervised Segmentation in Medical Images

该论文提出了一种新的端到端半监督语义分割方法——差异最小化网络(DMNet)。DMNet利用两个解码器分支,通过最小化它们生成的软标签之间的差异来促进学习。此外,通过生成低熵掩模和采用对抗性训练策略,提高模型的泛化能力和伪标签质量。实验表明,DMNet在肾脏肿瘤和脑肿瘤数据集上超越了监督和半监督的基线方法,实现了最佳性能。
摘要由CSDN通过智能技术生成

[论文地址] [代码] [MICCAI 20]

Abstract

语义分割是医学图像分析中的一项重要任务。一般来说,训练具有高性能的模型需要大量的标记数据。然而,收集标记的数据通常是困难的,特别是对于医学图像。一些半监督方法已经被提出来,使用未标记的数据来促进学习。这些方法大多使用自训练的框架,如果模型本身预测的伪标签质量不高,那么模型就不能得到很好的训练。协同训练是医学图像分割中另一种广泛使用的半监督方法。它使用两个模型并使它们相互学习。所有这些方法都不是端到端的。在本文中,我们提出了一种新的端到端方法,称为差异最小化网络(Difference Minimization Network, DMNet),用于半监督的语义分割。为了使用未标记的数据,DMNet采用了两个解码器分支,并将两个解码器产生的软标签之间的差异最小化。通过这种方式,每个解码器可以在另一个解码器的监督下学习,因此它们可以同时得到改进。同时,为了使模型的泛化效果更好,我们强迫模型在未标记的数据上生成低熵掩码,这样模型的决策边界就在低密度区域。同时,采用对抗性训练策略来学习判别器,这可以鼓励模型产生更准确的标签。在肾脏肿瘤数据集和脑肿瘤数据集上的实验表明,我们的方法可以超越基线,包括监督和半监督的方法,达到最佳性能。

Method

在这里插入图片描述
核心思想为设计一种双Decoder的网络,通过约束两个decoder产生一致的结果,从而更好的学习特征。

Difference Minimization 约束两个decoder产生一致结果的损失函数如下: L s e m i ( U ; θ s ) = 1 − 1 K ∑ k = 1 K 2 ∑ h = 1 H ∑ w = 1 W Y ^ h , w , k ( 1 ) Y ^ h , w , k ( 2 ) ∑ h = 1 H ∑ w = 1 W ( Y ^ h , w , k ( 1 ) + Y ^ h , w , k ( 2 ) ) L_{s e m i}\left(\boldsymbol{U} ; \theta_{s}\right)=1-\frac{1}{K} \sum_{k=1}^{K} \frac{2 \sum_{h=1}^{H} \sum_{w=1}^{W} \hat{\boldsymbol{Y}}_{h, w, k}^{(1)} \hat{\boldsymbol{Y}}_{h, w, k}^{(2)}}{\sum_{h=1}^{H} \sum_{w=1}^{W}\left(\hat{\boldsymbol{Y}}_{h, w, k}^{(1)}+\hat{\boldsymbol{Y}}_{h, w, k}^{(2)}\right)} Lsemi(U;θs)=1K1k=1Kh=1Hw=1W(Y^h,w,k(1)+Y^h,w,k(2))2h=1Hw=1WY^h,w,k(1)Y^h,w,k(2)

Sharp 为了使得生成的伪标签置信度更高,采用sharp操作去除伪标签中不确定的区域: Sharpen ⁡ ( Y ^ h , w , c ( i ) , T ) = ( Y ^ h , w , c ( i ) ) 1 / T ∑ i = 1 K ( Y ^ h , w , i ( i ) ) 1 / T ∀ h ∈ [ 1 : H ] , w ∈ [ 1 : W ] , T ∈ ( 0 , 1 ) \operatorname{Sharpen}\left(\hat{\boldsymbol{Y}}_{h, w, c}^{(i)}, T\right)=\frac{\left(\hat{\boldsymbol{Y}}_{h, w, c}^{(i)}\right)^{1 / T}}{\sum_{i=1}^{K}\left(\hat{\boldsymbol{Y}}_{h, w, i}^{(i)}\right)^{1 / T}} \quad \forall h \in[1: H], w \in[1: W], T \in(0,1) Sharpen(Y^h,w,c(i),T)=i=1K(Y^h,w,i(i))1/T(Y^h,w,c(i))1/Th[1:H],w[1:W],T(0,1)

Discriminator 本文引入判别器的作用是判断标签是否为真实的标签还是伪标签,从而使得生成的伪标签质量更高。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值