每日Attention学习18——Grouped Attention Gate

模块出处

[ICLR 25 Submission] [link] UltraLightUNet: Rethinking U-shaped Network with Multi-kernel Lightweight Convolutions for Medical Image Segmentation


模块名称

Grouped Attention Gate (GAG)


模块作用

轻量特征融合


模块结构

在这里插入图片描述


模块特点
  • 特征融合前使用Group Conv进行处理,比标准卷积更加轻量
  • 将融合得到的粗特征视为Spatial Attention Map, 并与Encoder特征相乘,从而实现名字中"Gate"的效果
  • 相较于特征融合模块,也可以视为一种利用辅助信息(Decoder)特征以增强Encoder特征的增强模块

模块代码
import torch
import torch.nn as nn
import torch.nn.functional as F


class GAG(nn.Module):
    def __init__(self, F_g, F_l, F_int, kernel_size=1, groups=1):
        super(GAG,self).__init__()
        if kernel_size == 1:
            groups = 1
        self.W_g = nn.Sequential(
            nn.Conv2d(F_g, F_int, kernel_size=kernel_size,stride=1,padding=kernel_size//2,groups=groups, bias=True),
            nn.BatchNorm2d(F_int)
        )
        self.W_x = nn.Sequential(
            nn.Conv2d(F_l, F_int, kernel_size=kernel_size,stride=1,padding=kernel_size//2,groups=groups, bias=True),
            nn.BatchNorm2d(F_int)
        )
        self.psi = nn.Sequential(
            nn.Conv2d(F_int, 1, kernel_size=1,stride=1,padding=0,bias=True),
            nn.BatchNorm2d(1),
            nn.Sigmoid()
        )
        self.activation = nn.ReLU(inplace=True)

        
    def forward(self,g,x):
        g1 = self.W_g(g)
        x1 = self.W_x(x)
        psi = self.activation(g1+x1)
        psi = self.psi(psi)
        return x*psi
    

if __name__ == '__main__':
    x1 = torch.randn([1, 64, 44, 44])
    x2 = torch.randn([1, 64, 44, 44])
    gag = GAG(F_g=64, F_l=64, F_int=64//2, kernel_size=3, groups=64//2)
    out = gag(x1, x2)
    print(out.shape)  # [1, 64, 44, 44]

内容概要:本文档《AUTOSAR_SRS_ModeManagement.pdf》定义了AUTOSAR经典平台(Classic Platform)中模式管理模块的功能与非功能性需求,涵盖ECU状态管理器(EcuM)、看门狗管理器(WdgM)、通信管理器(ComM)和基础软件模式管理器(BswM)四大核心模块。文档详细阐述了各模块在启动、运行、休眠及关机等状态下的行为规范、配置要求与接口标准,支持多核架构、部分网络(Partial Networks)、报警时钟、故障监控与诊断等功能,并明确了各模块间的协作机制与系统级模式切换策略。此外,文档还提供了需求追溯表,确保各项功能符合AUTOSAR整体架构要求。; 适合人群:汽车电子领域从事嵌入式软件开发、系统架构设计及相关技术研究的工程师和技术人员,尤其是熟悉AUTOSAR架构并参与ECU软件开发、集成或验证工作的专业人士。; 使用场景及目标:①用于指导AUTOSAR平台上ECU模式管理系统的标准化设计与实现;②支持开发者理解和配置ECU的启动/关闭流程、通信资源调度、看门狗监控机制以及跨ECU的模式协调;③为功能安全、低功耗设计和诊断系统提供基础支撑。; 阅读建议:此文档属于AUTOSAR标准需求规格说明书,技术性强且内容详尽,建议结合相关模块的软件规范(SWS)和系统模板文档一起研读,并配合实际项目中的配置工具与代码实现进行对照理解,以掌握模式管理的整体架构与细节约束。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值