【论文速看】DL最新进展20241022-工业检测

【工业检测】

[CVPR 2024] Real-IAD: A Real-World Multi-View Dataset for Benchmarking Versatile Industrial Anomaly Detection

论文链接:https://arxiv.org/pdf/2403.12580

代码链接:https://realiad4ad.github.io/Real-IAD

工业异常检测(IAD)已经获得了显著的关注并经历了快速的发展。然而,由于数据集的局限性,最近IAD方法的发展遇到了一定的困难。一方面,大多数最先进的方法在主流数据集如MVTec上的AUROC评分达到了饱和(超过99%),不同方法之间的差异无法很好地区分,导致公共数据集与实际应用场景之间存在显著差距。另一方面,对各种新的实用异常检测设置的研究受到数据集规模的限制,这可能导致评估结果的过拟合风险。因此,文中提出了一个大规模的、真实的多视角工业异常检测数据集,名为Real-IAD,它包含30种不同对象的15万张高分辨率图像,其规模比现有数据集高出一个数量级。它具有更广泛的缺陷面积和比例范围,使其比之前的数据集更具挑战性。为了使数据集更接近真实应用场景,采用了多视角拍摄方法,并提出了样本级评估指标。此外,除了一般的无监督异常检测设置外,还基于观察到的工业生产中通常大于60%的良品率,提出了一个新的全无监督工业异常检测(FUIAD)设置,这具有更多的实际应用价值。最后,报告了流行的IAD方法在Real-IAD数据集上的结果,提供了一个极具挑战性的基准,以促进IAD领域的发展。

在这里插入图片描述


[CVPR 2024] Toward Generalist Anomaly Detection via In-context Residual Learning with Few-shot Sample Prompts

论文链接:[]https://arxiv.org/pdf/2403.06495(https://arxiv.org/pdf/2403.06495)

代码链接:https://github.com/mala-lab/InCTRL

本文探讨了通用异常检测(GAD)问题,旨在训练一个单一的检测模型,该模型能够在不进行任何进一步训练的情况下,泛化到不同应用领域的多样化数据集上检测异常。一些近期研究表明,像CLIP这样的大型预训练视觉-语言模型(VLMs)在从各种数据集中检测工业缺陷方面具有强大的泛化能力,但这些方法严重依赖于关于缺陷的手工制作文本提示,使得它们难以泛化到其他应用中的异常,例如医学图像异常或自然图像中的语义异常这项工作提出使用少量正常图像作为样本提示,即时训练一个GAD模型用于在多样化数据集上进行AD。为此,引入了一种新颖的方法,学习一个上下文内残差学习模型用于GAD,称为InCTRL。它在辅助数据集上训练,以基于查询图像和少量正常样本提示之间的残差的整体评估来区分异常和正常样本。无论数据集如何,根据异常的定义,异常比正常样本预期有更大的残差,从而使InCTRL能够在不进行进一步训练的情况下跨不同领域泛化。在九个AD数据集上进行了全面实验,建立了一个GAD基准,涵盖了工业缺陷异常、医学异常和语义异常的检测,在一对一和多类别设置中,InCTRL是表现最佳的模型,并且显著优于最先进的竞争方法。

在这里插入图片描述


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IRevers

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值