-
- 本来理解和使用不是很清楚,整理以后思路清晰了很多。
-
LSTM之keras实现
import numpy as np np.random.seed(2017) #为了复现 from __future__ import print_function from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential from keras.layers import LSTM, Activation, Dense from keras.optimizers import Adam (X_train, y_train), (X_test, y_test) = mnist.load_data() #参数 #学习率 learning_rate = 0.001 #迭代次数 epochs = 2 #每块训练样本数 batch_size = 128 #输入 n_input = 28 #步长 n_step = 28 #LSTM Cell n_hidden = 128 #类别 n_classes = 10 #x标准化到0-1 y使用one-hot 输入 nxm的矩阵 每行m维切成n个输入 X_train = X_train.reshape(-1, n_step, n_input)/255. X_test = X_test.reshape(-1, n_step, n_input)/255. y_train = np_utils.to_categorical(y_train, num_classes=10) y_test = np_utils.to_categorical(y_test, num_classes=10) model = Sequential() model.add(LSTM(n_hidden, batch_input_shape=(None, n_step, n_input), unroll=True)) model.add(Dense(n_classes)) model.add(Activation('softmax')) adam = Adam(lr=learning_rate) #显示模型细节 model.summary() model.compile(optimizer=adam, loss='categorical_crossentropy', metrics=['accuracy']) model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, #0不显示 1显示 validation_data=(X_test, y_test)) scores = model.evaluate(X_test, y_test, verbose=0) print('LSTM test score:', scores[0]) #loss print('LSTM test accuracy:', scores[1])
TensorFlow之LSTM
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # set random seed for comparing the two result calculations tf.set_random_seed(1) # this is data mnist = input_data.read_data_sets('MNIST_data', one_hot=True) # hyperparameters lr = 0.001 training_iters = 100000 batch_size = 128 n_inputs = 28 # MNIST data input (img shape: 28*28) n_steps = 28 # time steps n_hidden_units = 128 # neurons in hidden layer 隐藏神经元个数 n_classes = 10 # MNIST classes (0-9 digits) # tf Graph input x = tf.placeholder(tf.float32, [None, n_steps, n_inputs]) y = tf.placeholder(tf.float32, [None, n_classes]) # Define weights weights = { # (28, 128) 'in': tf.Variable(tf.random_normal([n_inputs, n_hidden_units])), # (128, 10) 'out': tf.Variable(tf.random_normal([n_hidden_units, n_classes])) } biases = { # (128, ) 'in': tf.Variable(tf.constant(0.1, shape=[n_hidden_units, ])), # (10, ) 'out': tf.Variable(tf.constant(0.1, shape=[n_classes, ])) } def RNN(X, weights, biases): # hidden layer for input to cell ######################################## # transpose the inputs shape from # X ==> (128 batch * 28 steps, 28 inputs) X = tf.reshape(X, [-1, n_inputs]) # into hidden # X_in = (128 batch * 28 steps, 128 hidden) X_in = tf.matmul(X, weights['in']) + biases['in'] # X_in ==> (128 batch, 28 steps, 128 hidden) X_in = tf.reshape(X_in, [-1, n_steps, n_hidden_units]) # cell ########################################## # basic LSTM Cell. cell = tf.contrib.rnn.BasicLSTMCell(n_hidden_units) # lstm cell is divided into two parts (c_state, h_state) init_state = cell.zero_state(batch_size, dtype=tf.float32) # You have 2 options for following step. # 1: tf.nn.rnn(cell, inputs); # 2: tf.nn.dynamic_rnn(cell, inputs). # If use option 1, you have to modified the shape of X_in, go and check out this: # https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/recurrent_network.py # In here, we go for option 2. # dynamic_rnn receive Tensor (batch, steps, inputs) or (steps, batch, inputs) as X_in. # Make sure the time_major is changed accordingly. outputs, final_state = tf.nn.dynamic_rnn(cell, X_in, initial_state=init_state, time_major=False) # hidden layer for output as the final results ############################################# # results = tf.matmul(final_state[1], weights['out']) + biases['out'] # # or # unpack to list [(batch, outputs)..] * steps #交换维度 outputs = tf.unstack(tf.transpose(outputs, [1,0,2])) results = tf.matmul(outputs[-1], weights['out']) + biases['out'] # shape = (128, 10) return results pred = RNN(x, weights, biases) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y)) train_op = tf.train.AdamOptimizer(lr).minimize(cost) correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) with tf.Session() as sess: init = tf.global_variables_initializer() sess.run(init) step = 0 while step * batch_size < training_iters: batch_xs, batch_ys = mnist.train.next_batch(batch_size) batch_xs = batch_xs.reshape([batch_size, n_steps, n_inputs]) sess.run([train_op], feed_dict={ x: batch_xs, y: batch_ys, }) if step % 20 == 0: print(sess.run(accuracy, feed_dict={ x: batch_xs, y: batch_ys, })) step += 1
深度学习-LSTM
最新推荐文章于 2023-12-16 11:28:22 发布