目录
基于 WiFi 的室内定位算法的研究 1
摘要 1
Abstract 2
1引言 4
1.1研究背景与意义 4
1.2国内外研究现状. 5
1.2.1国内研究现状 5
1.2.2国外研究现状 6
1.3主要研究内容 7
2室内定位相关技术概述 7
2.1基于Wi-Fi的室内定位技术 7
2.2基于蓝牙的室内定位技术 9
2.3 红外线的技术 11
2.4 GPS定位技术 11
3室内定位算法整体构架 13
3.1整体构架 13
3.2构建指纹库 15
3.3预处理 16
3.4投票机制 19
4实验结果及分析 22
4.1实验设置 22
4.2预处理对定位精度的影响 23
4.3 结果分析 24
5结论 26
致谢 31
1引言
1.1研究背景与意义
随着智能手机设备的广泛应用和众多无线通讯工具的部署,已经步入了移动互联网的新纪元。在这个时代,众多基于位置服务四的应用软件,例如滴滴打车、美团外卖和高德地图等,都极大地丰富了的日常生活和出行选择。同时,用户对位置信息的需求也日益增加,这就要求企业能为消费者提供更加精准、可靠的位置信息,并将其应用于各种业务活动当中。在以位置为基础的产品和应用服务领域,位置信息已经变成了连接线上与线下世界的关键链接。在户外区域,全球定位系统为提供了准确的外部位置数据。但是,由于室内的卫星信号难以穿透如钢筋混凝土这样的建筑材料,再加上室内环境中的电磁干扰、多径效应和非视距等问题,使得室内的定位效果难以与室外相比。此外,室内用户通常是通过手持电子设备进行操作的,而手持电子产品往往携带着各种不同类型的传感器。因此,在室内定位领域,如何快速、精确且经济地确定室内环境中的人或物的具体位置已经变成了研究的焦点。目前已有多种室内定位算法被提出并得到广泛应用。室内定位技术的研究有效地满足了人们对于“最后一米”位置的服务需求,为人们在室内进行各种活动提供了极大的便捷性。随着互联网技术与无线通信技术的飞速发展,基于无线网络环境下的定位技术得到了很大的发展。例如,在大型商务中心、机场和火车站的定位导航,地下停车场的车辆定位搜寻,出口导航,以及火灾救援现场的人员快速定位营救等应用场景日益增多,这类应用也很早就引起了研究人员的关注。目前室内定位技术已经有很多成熟的算法,但是由于室内环境复杂多样,导致传统的方法很难满足实际需要。在最近的几年中,众多的科技公司纷纷加大了室内定位应用的推广力度。例如,谷歌已经将地图技术应用于室内空间,通过GPS、蜂窝网络基站和WiFi等多种工具来精确地定位智能手机用户在室内的位置。而微软亚洲研究院则采用了WiF技术和运动追踪等多种方法,确保室内定位的准确性能够控制在5m之内;另外,一些企业还将其用于智能楼宇或工厂的远程控制与管理,甚至是对家庭安防系统进行监控等方面。苹果公司最近推出了Bluetooth LowEnergy BLE(低功耗蓝牙)微定位技术,这项技术能够在一个理想的环境中实现不超过1米的定位精度。这些先进的室内定位技术为人们提供了一个全新的生活体验。全球的研究人员正在积极地研究和开发室内定位技术,并已经扩展了多种定位技术,包括红外线、计算机图像和视觉、无线射频识别(RadioFrequency Identification RFID)、行人航迹推算(PedestrianDeadReckoning PDR)、超宽带(Ultra WidebandUWB)和地磁等。在决定使用哪种定位技术时,首先要权衡定位的准确性和成本,其次是安装的可靠性、能源消耗和覆盖的广度等关键因素。
1.2国内外研究现状.
1.2.1国内研究现状
在最近的几年中,无论是国内还是国外,众多的研究人员都在室内定位这一领域投入了大量的研究资源,并逐渐构建了一个相对完善的室内定位的理论框架。其中最主要的是基于距离测量原理的室内定位系统和基于无线传感器网络的室内定位导航系统两种类型。根据是否需要进行测距,室内定位技术可以被分类为测距定位技术和非测距定位技术。本文主要介绍几种常见的测距定位系统及其特点,并对它们进行比较分析。距离测量和定位技术通常可以被划分为两个主要阶段:第一个是测距阶段,第二个是定位阶段。本文主要针对目前最流行的测距方法进行讨论,并对其优缺点进行分析。基于信号飞行时间法(TimeofFlight TOF)和信号能量衰减模型法,通常采用测距的基本原理。在非测距定位系统中,主要利用超声波传感器进行数据采集与处理。TOF的距离测量原理基于发射机向接收机发出的信号,通过这些信号的飞行速度和持续时间,可以推算出信号的飞行距离19],而超声测距仪是最早采用TOF原理的测距工具。目前主要有两种方法实现测距,一种是利用天线辐射出的电磁波进行测距,另一种是采用射频电路将目标回波转换成电信号后再由雷达系统获得其位置信息。由于TOF测距技术在时间测量精度方面有较高的要求,并且容易受到多径效应的影响,因此不太适用于环境复杂的室内环境。因此目前使用最多的是利用信号衰减理论来进行测距的方式。基于信号能量衰减模型的测距原理表明,接收机与发射机的距离越远,接收到的信号强度就越低。因此,结合能量衰减模型,可以计算出接收机与发射机之间的距离10。为了解决这个问题,本文提出了一种新的利用多目标跟踪算法进行室内三维定位精度分析的方案。这种测距技术的基本原理既简洁又易于实施,但由于接收到的信号强度容易受到外部环境的影响,可能会出现明显的波动,这进一步可能导致较大的测距误差。在定位过程中,主要使用质心定位技术,并对接收机与多个发射机的距离进行测量,然后通过数学模型来确定待定位位置的具体位置。在室外环境中,为了提高定位精度,需要对各个发射站进行高精度同步。由于室内环境的复杂性,测距定位技术不能确保获得准确的测距结果,因此,测距定位技术在室内定位的精度上并不是很理想。在此情况下,可以将非测距定位技术引入室内定位系统中。目前最普遍采用的非测距定位方法是基于位置指纹的技术。这种指纹定位方法不需要考虑建筑物遮挡导致的RSSI衰减,也不需要预先知道AP的具体位置,因此它已经受到了广泛的关注和应用。本文以某大型公共建筑为案例,介绍一种利用无线信号实现精确定位的方法——基于无线信号强度值的定位技术。本文主要介绍如何利用机器学习算法实现指纹法在线定位,从而提高定位精度。在离线创建指纹库的阶段,首先需要对定位场景进行网格化并设置参考点。在每一个参考点上,收集多个AP的RSSI数据,生成一个RSSI指纹向量,并对整个定位场景下的所有指纹向量进行整合,从而构建指纹库。在在线定位的过程中,收集了待定位点的RSSI指纹向量,并与指纹库里的RSSI指纹向量进行了比对,利用机器学习技术来确定这些待定位点的确切位置。对于不同类型的指纹数据库,其相似度会有所差别,因此需要根据实际情况选择合适的指纹库作为参考模板。在确定待定位点位置与指纹库进行匹配的过程中,通常会选择使用K近邻(K-Nearest Neighbor KNN)算法或者WKNN算法[13]。KNN算法从指纹库中筛选出与待定位点指纹相似度最高的K个指纹,并对这些指纹的相应位置进行平均值计算,以确定待定位点的具体位置。WKNN算法实际上是对KNN算法的一种优化,该算法采用距离作为近邻参考点位置的加权平均值,从而准确地确定了待定位点的具体位置,从而提升了定位的准确性。
1.2.2国外研究现状
目前,很多智能设备,例如智能手机和平板电脑,都配备了蓝牙芯片,这不仅操作简单,还有助于室内定位技术的实施和推广。随着蓝牙5.0修订版的发布,信号的传输时间、速度和安全性都得到了显著的提升,这使得使用蓝牙iBeacon的成本和损耗得到了显著的降低。此外,iBeacon信标设备的续航能力和电池寿命也非常出色,即使面对突发情况导致的大面积停电,也能保持正常运行,为在危险环境下,如井下区域的定位提供了可靠的支持。目前,大多数室内定位系统是通过安装于建筑物或其他固定场所中的传感器来获取目标物体的数据信息。众多的学者已经对蓝牙的室内定位技术进行了深入的探讨,并获得了众多的研究成果。Mario及其团队利用接收信号的强度、错误率以及蜂窝数据的质量来评估室内的定位效果,并选择了基于位置几何关系的三角测量技术来进行精确定位。为了克服信号传输过程中可能出现的噪声问题,相关文献采用了高斯滤波技术来优化环境干扰系数,并构建了一个自适应的信号强度校准器,从而增强了定位的稳定性。毕京学和他的团队采用了最小二乘法来构建路径损耗模型,并用距离参数来代替接收信号的RSSI值。此外,他们还对室内的蓝牙AP位置进行了几何上的优化,确保了AP的准确筛选。在文献资料中,建议使用最小二乘法来增强定位区域,并通过高斯滤波技术来提升蓝牙定位的精确度。Qi推出了一种基于自适应带宽的均值转换方法,该方法能对WKNN算法获取的空间位置进行精确识别,从而提供更为精确的室内定位数据。在研究过程中发现,传统的三角测距算法无法适用于室内环境下的定位问题,且存在着较大的计算量。文献中对三角测量技术进行了卡尔曼滤波的优化,这大大减少了行人障碍和多径效应导致的信号偏差。本文针对上述研究现状存在问题,提出一种新的基于三角模板匹配与模糊理论相结合的无线传感器网络节点快速定位系统。文献[3,4]构建了三个互不相关的信号衰减模型,并依据距离对信号进行了重新组合,采用加权三角测量法来进行坐标定位,从而增强了蓝牙定位的通用性。
1.3主要研究内容
分析WiFi信号传输特性,研究信号强度、信号到达时间等参数在室内环境中的变化规律。研究基于指纹识别的WiFi室内定位算法,包括指纹库建立、指纹匹配算法设计等方面。研究基于信号波形的WiFi室内定位算法,分析WiFi信号波形特征,并设计相应的定位算法。对比分析不同定位算法的性能,包括定位精度、稳定性、实时性等方面。搭建实验平台,采集实际环境中的WiFi信号数据,验证算法的有效性和实用性。
2室内定位相关技术概述
2.1基于Wi-Fi的室内定位技术
因此,通常采用基于位置指纹的技术来进行定位。为了降低由WF信号波动引起的精度降低,大部分指纹识别技术都是从标记数据中抽取浅层信息,作为Wi-F的特征。均值法被广泛认为是特征提取中最常用的方法,该方法是通过在同一地点收集多个RSS向量,并对这些向量进行平均处理以生成特征。虽然RSS的变动是不可预知的,但从统计学的视角来看,平均值有助于减少RSS的不稳定性。文献[15]基于均值法,并假设同一位置RSS遵循高斯分布,提出了高斯模型。通过高斯过程,成功消除了小概率RSS和异常值可能带来的不良影响,并对高概率RSS向量进行了平均处理,以获取指纹特征。实验结果表明该算法能够有效地去除噪声和奇异点的干扰,提高分类精度。文献[16]采用了主成分分析来提取W特征,这不仅为多维无线信号提供了新的特征,还有效地减少了噪声的干扰。AP作为WiFi信号的发射源,文献[17]给出了如何选择AP的方法,即选取每个位置上具有最高RSS的K个AP作为信标。
在定位算法方面,提出了K近邻(KNearest Neighbors KNN)方法,该方法利用欧氏距离从指纹库中识别出K个最接近的WiF指纹,并进一步计算这些K个指纹对应的物理位置的平均值,以确定待定位点的具体坐标。该方法能够准确地对未知地理位置的目标实现精确定位。对KNN算法进行了优化,并在此基础上融入了权重概念,从而形成了WKNN算法,该算法利用加权平均值来估算位置。使用概率密度函数来估算实时数据与参考节点间的相互关系。考虑到RSS容易受到环境噪声的干扰,提议采用密度峰值聚类来进行子空间的匹配,这种方法可以有效减少RSS中由于突发常声导致的定位偏差,与WKNN算法相比,其定位精度提高了大约25%。为了解决WiFi指纹定位出现的跳变问题,采用了PDR解算的步长数据来对WiFi指纹定位进行限制,从而优化定位结果,使其更贴近实际的轨迹。
WFi模块是室内环境中普遍存在的无线网络,并且大多数智能手机都配备了这一模块。因此,可以预见,随着技术的持续进步,WiFi技术在室内定位领域的应用将逐渐扩大,从而为人们提供更加优质的服务体验。在1999年,WiFi技术首次进入市场,并从那时起开始了它的快速发展。由于其低成本、低功耗等优点,使得该技术受到许多厂商和研究人员的关注和青睐。随着全球对无线网络需求的持续上升,WiFi技术在世界各地都得到了广大的应用,它已经变成了当前最受欢迎的无线网络技术之一。在进行室内定位时,WiFi技术能够利用WiF信号的强度来准确地确定用户所处的位置。由于无线信道环境复杂多变,所以需要采用一种新的方法进行测量。这项技术能够通过分析WiFi热点与WiFi接收器间的信号,来估算用户之间的距离和移动方向。因此,通过对WiF信号的收集和分析,能够确定用户在室内的确切位置。随着科技的持续进步,WiFi技术在室内位置定位上的精确度也逐渐提高。目前,该领域已成为研究的热点之一。该技术已广泛应用于多个领域,包括但不限于室内导航系统、室内定位服务以及室内安全措施等。WiFi定位技术主要是基于传播模型或者RSS指纹来进行定位的。对于后者则需要对信号源进行准确地识别和精确定位。在前者的基础上,采用传播模型描述信号在环境中的传播方式。这些模型通常会将RSS转化为距离来确定设备的预估位置,但这种方法的核心挑战是确定每个信标的确切位置,这在实际操作中是相当困难的。另外,由于信号出现阻塞,这种传播模型在复杂且不断变化的室内环境中并不适宜。
2.2基于蓝牙的室内定位技术
目前,无线信息的定位计算大致可以分为两种:一种是基于场景特征分析的;一类是基于统计规律的。另外一种则是建立在位置几何关系之上的。这两大类中的每一种都有其各自的优势及不足,而如何利用各种不同类型的方法来提高定位精度就显得非常必要了。第一个定位方法通常分为两个关键阶段:离线和在线。在在线阶段,利用移动设备获取实时的地理位置信息。在离线状态下,整个位置区域被划分为多个独立的网格,这样做是为了更精确地捕获每个网格点上独有的位置场景特性(例如RSSI等),这些独特特性将共同构成一个“指纹”,用以描述该点的独特性质。在在线定位过程中,利用离线获取到的大量“指纹”作为先验知识来对目标物进行准确的识别和定位问题。收集了待定位区域内各个采集点的指纹信息,并据此建立了一个全面的离线指纹数据库。当移动设备处于特定地理位置时,该系统就会自动生成相应的位置服务请求,并且能够以实时或定时模式向移动设备发送相关信息,帮助其快速完成定位导航任务。在在线定位的过程中,用户的智能终端可以将其在任何地方收集的RSSI指纹与之前建立的离线指纹库进行匹配,利用特定的定位匹配技术来确定用户智能终端的确切位置。由于移动通信网络环境复杂多样,因此在室内定位方面还需要进一步研究和改进。在利用位置几何关系进行定位的过程中,可以采用三角函数和数学算法来建立用户终端设备与AP节点之间的定位关系。通过无线信号传输过程中的参数,可以计算出用户当前的位置坐标,从而实现更精确的定位。在室内定位方面,目前已经有许多研究人员提出了很多有效的解决方案。除了上述方法,还有其他几种具有代表性的技术,如信息到达角度法、信号到达时间法以及信息到达时间差法等。
目前,很多智能设备,例如智能手机和平板电脑,都配备了蓝牙芯片,这不仅操作简单,还有助于室内定位技术的实施和推广。随着蓝牙5.0修订版的发布,信号的传输时间、速度和安全性都有了明显的提升,这也导致了使用蓝牙iBeacon的成本和损耗有了显著的减少。此外,iBeacon信标设备在电池使用寿命和续航能力上都表现得相当出色,即便是在突发事件导致大规模停电的情况下,它依然能够稳定工作,为在如井下这样的危险环境中的定位提供了坚实的后盾。众多学者已经对蓝牙的室内定位技术进行了深入的探讨,并获得了众多的研究成果。
Mario[]和他的团队利用接收信号的强度、错误率以及蜂窝数据的质量来评估室内的定位效果,并选择了基于位置几何关系的三角测量技术来进行精确定位。由于无线信道存在一定程度的衰落现象,使得定位精度降低。文献[29]为了应对信号传输过程中的噪声挑战,采用了高斯滤波技术来优化环境的干扰系数,并构建了一个自适应的信号强度校准器,从而增强了定位的稳定性。毕京学和他的团队[30]采用了最小二乘法来构建路径损耗模型,并用距离参数来代替接收信号的RSSI值。他们还对室内蓝牙AP位置进行了几何优化,以确保AP的准确筛选。在此基础上,他们建议使用最小二乘法来加强定位区,并结合高斯滤波来提高蓝牙定位的准确性。Qi2提出了一种自适应带宽的均值转换方法,用于识别WKNN算法获取的位置,从而提供更准确的室内定位信息。文献[13]对三角测量方法进行了卡尔曼滤波的改进,有效地缓解了行人障碍和多径效应带来的信号误差。文献[14]建立了三个相互独立的信号衰减模型,并根据距离重新组合信号,使用加权的三角测量法进行坐标定位,从而提高了蓝牙定位的通用性。
在场景分析的定位技术中,Reginald2s1及其团队提出了一个多层感知模型,该模型结合了卷积神经网络和回归指纹技术,旨在克服传统匹配方法的局限性,从而实现更优的定位效果。除此之外,Ruanl和他的团队还采用了行人移动技术来扩大指纹的覆盖区域,从而创建了一个自适应的动态指纹窗口,并在此基础上对WKNN算法进行了优化,这极大地提高了位置定位的准确性和工作效率。刘奔[17等研究者运用贝叶斯算法,并结合先前的RSSI信息,对AP信标进行了筛选,从而确定了位置预测的最大置信度区域。文献[18]则提出了一种基于Isomap的加权K近邻算法,该算法使用欧氏距离来降低不同RSSI信号的维度,并采用WKNN算法对实际位置坐标进行估计,从而进一步提高了定位的精度。周向前和其他研究人员使用了融合K-means聚类算法多次选代蓝牙离线指纹库,并通过调整误差平方和轮廓系数等参数来建立聚类中心,从而极大地提高了方法的安全性和位置的准确性[19]。
2.3 红外线的技术
红外线在室内定位分为两类方法:首先,当目标定位时,使用红外线IR标识作为移动信号,发射调制红外射线,并利用放置在室内的光学传感器进行定位;第二种技术方式是利用多组发射器与接收器,形成红外线网来覆盖被测物体所在的空间,以直接定位移动的目标。红外线的技术已经相当成熟,并且在室内定位方面具备较高的精确性。但是,红外线的传播范围有限,且其穿透能力相当弱,如果用家里的电视遥控器作为参考,标识一旦受到遮挡可能无法正常工作,同时也非常容易受到像光线、烟雾这样的外部因素的影响。考虑到红外线具有有限的传播距离,其布局通常需要在每一个遮挡背后甚至转角都设置接收终端。这样的布局不仅使得成本有所提升,而且定位效能相对局限。红外线的室内定位方法对于精确记录实验室内简单物体的运动路径以及室内独立行走机器人的确切位置来说是相当适合的。
2.4 GPS定位技术
作为当今使用最广的一种室外位置定位方法,全球定位系统(GPS)拥有出色的准确度和对全球的广泛覆盖率。但是,室内环境条件下,GPS定位技术面对的困难和挑战是多种多样的。本论文的目的是深入研究GPS定位系统的基本原理、在室内位置定位方面的现有应用状况以及所面临的各种挑战,以期为基于WiFi平台的室内定位算法研究提供有益的背景和参考信息。GPS定位技术依赖于卫星信号传输和接收的基础原理,通过精确测量至少四颗GPS卫星传输到接收机的时间,并结合卫星历史资料,来推算接收机的三维坐标信息(如经度、纬度和高度)和与这些信息相关的时间信息。GPS的整体系统是由空间卫星、地面的监测系统以及用户接收模块三个主要部分所组成,它拥有高度准确、全天候工作以及全球范围覆盖的多重优势。虽然在室外空间,GPS的定位能力表现得相当不错,但是在室内场所,因为建筑物造成的遮挡、信号的衰减以及多径效应等多种原因,GPS的信号常常难以通过建筑,或者信号强度大幅降低,这都可能导致定位的准确性受到严重影响或是甚至完全失效。所以,GPS在室内的定位技术应用上面临着诸多挑战。现阶段,部分研究正试图结合GPS信号增强和其他的室内定位方法,以增强室内位置的精准度。比如说,可以采用差分GPS系统、辅助GPS系统或者与其他无线技术(例如WiFi、蓝牙)进行集成导航。尽管如此,这些建议和方法还是面临一定的障碍和问题。
2.6定位技术对比
表2.1 定位技术比较
信号源 常用测量方法 优点 缺点
WiFi RSS 基础设施完善,成本低,实用性强 易受环境变化影响,定位精度低
BLE RSS 功耗低,安全性高,精度较高 信号传播距离短,需要额外硬件设施,容易受到干扰
UWB TOA、TDOA 能减小多径干扰,穿透力强精度高 设备成本高,会受到金属材料干扰,需要部署硬件设施
RFID AOA、TDOA 便携性好,可编程记录运行轨迹 定位覆盖小,安全性差
从表2-1中可看出每一种室内定位技术都具有其自身的优势和不足。本文对几种常用室内定位技术进行了比较分析。例如,WiFi定位技术的安装相对简单,但其定位的准确性可能会受到外部环境信号的影响;超声波定位技术可以实现高精度的精确定位,但是需要较大范围的覆盖才能保证精度,且无法进行长距离实时测量。虽然红外定位技术具有高定位精度,但其成本较高并且容易受到照明条件的影响。RFID技术不仅成本效益高、精确度上乘,而且其定位的距离也相对较短。可见光定位系统具有一定优势,但是易受天气因素影响。虽然超声波定位技术具有极高的精确度,但其精度可能会受到周围环境温度变化的影响。基于以上两种技术的综合应用能够有效提高室内定位系统的性能。在具体的应用场景和需求中,决定采用哪一种室内定位技术是至关重要的。因此,不同场合下的定位精度是有差异的。比如说,在需要进行高精度定位的应用场景中,使用超声波进行定位可能会更为适宜;对于需要大规模部署且成本较低的场合,RFID技术或许更为适宜。因此,不同类型的室内定位系统应采用不同的定位技术,以满足不同的应用状况。在决定室内定位技术的时候,必须全面权衡定位的准确性、费用、能源消耗、系统稳定性和对环境的适应能力等多个要素。
这一部分主要聚焦于软件界面和软件业务的设计,其中软件业务主要涵盖了WiFi扫描服务和文件存储服务,具体的设计细节如下。(1)主界面设计方面,主要由位置文本框、扫描次数文本框以及WiFi扫描按钮组成,其操作界面设计相对直观简洁。(2)WiFi扫描业务的设计说明:当用户按下WiFi扫描按钮时,该业务会被激活,此时WiFi扫描的次数会从扫描次数的文本框中被读取。每当WiFi扫描完毕,广播系统都会告知WiFi扫描业务处理扫描的结果。完成特定的扫描次数后,系统会退出该业务,并启动文件存储功能,将RSSI数据保存为本地格式。(3)关于文件存储业务的设计:该业务的核心功能是将扫描的结果保存在本地文件里,文件的名称是时间戳加上扫描的位置坐标,正如图3.3所示的那样。为了将wifSacnResult对象的扫描数据保存为本地格式,需要对对象内的RSSI数据进行串行处理,并对这些业务逻辑进行文件存储业务的处理。
3室内定位算法整体构架
3.1整体构架
如图3-1所示,算法可以分为两个部分:离线阶段和在线阶段。离线阶段主要是将各个参考区域与目标区域之间的距离作为权值建立起一个索引数据库,从而实现了基于指纹的定位。在离线状态下,收集了每个参考点的指纹,并与其相应的位置数据一同形成了一个指纹库。在该模型中,用户根据自己当前所处的地理位置来决定是否使用移动通信技术获取其所在的位置。在在线处理阶段,首先对指纹数据库和用户的指纹数据进行了初步处理。其次,根据当前状态下所有待定位点与最近邻居之间距离之比作为权重因子来计算其相似度,确定候选节点集合。接下来,利用投票机制来选择公共的近邻点,并对它们的出现频率进行统计,然后通过概率加权方法来确定最终的定位结果。
图3-1算法模型图
对51种不同的距离度量进行了深入研究,并将这些距离度量划分为8个不同的组别。尽管每一组内的距离度量提供了不同的距离或相似性值,但当这些度量应用于基于距离的排序算法时,它们实际上是相等的。
在基于WiFi的室内定位算法中,距离度量是用于量化WiFi信号点与移动设备之间的“距离”或相似性的重要工具。这些距离度量方法的选择对于算法的准确性和效率有着直接影响。在收集到WiFi信号数据后,可能需要进行预处理,如滤波、去噪等。在这个阶段,距离度量方法可能不会被直接使用,但为后续步骤提供了数据基础。特征提取:从预处理后的WiFi信号数据中提取出对定位有用的特征,如信号强度、信号到达时间差(TDOA)等。在这个阶段,距离度量方法可能开始发挥作用,因为它们可以被用来量化特征之间的相似性或距离。匹配与定位:利用提取出的特征和已知WiFi信号点的位置信息,通过匹配算法(如KNN)来确定移动设备的位置。在这个阶段,距离度量方法被用来计算移动设备与已知WiFi信号点之间的“距离”或相似度,从而选择最匹配的信号点来估计移动设备的位置。投票机制:如果使用了多种不同的距离度量方法,可以通过投票机制来结合它们的优点。
因此,从这8组数据中随机选择了一种,从而形成了8种不同的距离或相似度测量方法,包括EuclideanL2、Sorensen、City_Block L1、Squared x2、Jaccard、Fidelity、Hellinger和Topse。这些测量方法为投票机制提供了基础,具体的表达式可以在公式(3-1)到(3-8)中找到:
(3-1)
(3-2)
(3-3)
(3-4)
(3-5)
(3-6)
(3-7)
(3-8)
在这里,d和s代表了基于每一种距离或相似度度量来评估指纹向量p和g的距离或相似度。Np代表AP的数量,而p和q则代表各自接收到的所有AP的信号强度值组成的指纹向量。pn和qn则代表各自从第n个AP接收到的信号强度值
3.2构建指纹库
离线阶段,通过在每个参考点采集指纹,它们的位置和指纹信息共同构成了指纹库。 指纹库可表示为:
(3-9)
其中,FPi和Pi分别代表了第i个RP指纹和位置坐标,NRP是所有参考点的总数。FPi可
表示为1xNAP的向量,如下式所示:
(3-10)
其中,表示第i个RP接收到来自于第n个AP的信号强度。同理,用户的实时指纹FPuser可表示为:
(3-11)
其中,RSS”表示用户接收到来自于第n个AP的信号强度.
图 构建流程
3.3预处理
RSS值是指纹识别技术所依赖的关键参数。指纹检测装置基于这个功率来估计用户的特征信息,并将其发送到服务器以获得相应于该用户的指纹。RSS值是用来表示特定接收到的Wi-Fi(IEEE802.11)无线信号功率的,具体用dBm来表示。在这一具体场景中,依据公式(3-12),该公式描述了接收到的信号功率与1毫瓦(mW)的参考功率的比率。
(3-12)
图 3-2 揭示了RSS值(dBm)与信号功率(mW)间的相互联系。根据这些关系式可以预测在给定条件下,所需要的最小信息传输量和最大信息容量。值得注意的是,相同的信号强度值差异会导致不同的功率差异。在本文中,提出一种基于指纹信息来判断是否存在异常行为的方法。以0dBm和-10dBm为例,它们分别对应功率差为0.9mW(9x10-1mW)的50dBm和-60dBm的0.000009mW(9x10-6mW),以及-90dBm和-100dBm的0.0000000009mW(9x10-10mW)。在本文中,提出一种基于指纹信息来判断是否存在异常行为的方法。
图3-2 RSS值(dBm)与信号功率(mW)之间的关系
选择了ZeroToOneNormalized、Positive、Exponential和Powed这四种预处理方法来表示RSS值。这四种不同的预处理方式可以有效地减少冗余信息并保持其完整性,同时也避免了对原始文本进行重新构造而带来的不方便之处。在采用Positive的预处理方法时,只需要去掉最小值,正如公式(3-13)所示
(3-13)
min代表了最微小的RSS数值,对于低强度数据,其结果与强相关的情况相反,即较高值可以更好地指示出信号最强或最弱。因此,较低的数值意味着信号的弱化,而较高的数值则意味着信号的增强。如果没有发现低阈值的存在,则表明该数据点属于弱标记样本,即为异常点或缺失。在这个表示里,最小可能值是0,这是用来表示没有检测到AP的。与此相似,ZeroToOneNormalized的描述可以在(3-14)中找到:
(3-14)
该值与Positive成正比,但强度值在0~1范围内归一化。以上两种预处理方法 (Positive和ZeroToOneNormalized)均保持了原始值的线性。 除此之外,Exponential和Powed预处理方法也被用来代替RSS值,以打破原始强 度值的线性关系,分别如式(3-15)和(3-16)所示:
(3-15)
(3-16)
其中,分母常数()设置为24,后者的指数()设置为数学常数e。为了更直观地表示RSS值与预处理之后的值之间的关系。