目录
诚 信 声 明 3
摘要 4
Abstract 5
目录 6
1 绪论 1
1.1研究背景与意义 1
1.2 国内外研究现状 2
1.3 研究内容与技术路线 8
2 数据描述与数据预处理 10
2.1 citysim数据集 10
2.2 Citysim数据集预处理 15
2.2.1 数据清洗 15
2.2.2 数据预处理 16
3 基于支持向量机的驾驶行为识别模型 18
3.1小客车驾驶行为标定 18
3.2小客车驾驶行为关键特征参数 18
3.3基于支持向量机的识别模型构建 18
4实例分析 19
4.1数据采集与处理 19
4.2 highD数据集预处理 20
4.3 基于LSTM的换道行为识别 23
4.4 算法验证及分析 24
4.4.1 数据降维分析及其验证 24
4.4.2 车辆行为识别效果分析 26
参考文献: 27
1 绪论
1.1研究背景与意义
交通行业是国民经济发展的支柱,随着全球化和经济增长的推动,高速公路建设里程迅速增长,为人们提供了便捷的交通设施,进一步刺激了出行需求的增长,提高了出行者对出行体验的期望,导致机动车保有量逐年上升。根据中国国家统计年鉴[1],2022年我国机动车驾驶员达5.02亿人,民用汽车保有量达3.12亿辆,较上年同期增长2064.41万辆。机动车保有量的增加,导致当前交通环境愈发复杂和恶劣,2022年中国道路交通事故死亡人数为60676人,其中机动车交通事故死亡人数为54305人;受伤人数为263621 人,其中机动车交通事故受伤人数为216677人;交通事故发生数量为25.6万起,机动车交通事故发生数量为21.6万起,机动车交通事故约占交通事故的84%,其中约有30%的机动车交通事故是由换道行为引起。机动车在给我们的生活提供方便的同时,也产生了诸如交通拥堵、交通事故等问题。因此,如何提高道路安全性,降低机动车驾驶风险,保障道路交通系统安全有序的高效运行,成为目前亟待解决的课题。而自动驾驶技术在车联网和人工智能技术的支持下,能够协调出行路线与规划时间,从而大程度提高出行效率,同时还能帮助避免醉驾,疲劳驾驶等安全隐患,减少驾驶员失误,提升安全性,自动驾驶也因此成为各国近年的一项研发重点。而轨迹预测在自动驾驶中承担着极为重要的角色,自动驾驶轨迹预测是指通过分析车辆行驶过程中的各种数据,预测车辆未来的行驶轨迹。作为自动驾驶的核心模块,轨迹预测的质量对于下游的规划控制至关重要。
在现代社会,随着汽车保有量的增加和城市交通拥堵问题的日益突出,汽车换道行为成为驾驶中至关重要的一个环节。换道行为直接涉及到驾驶员对周围环境的观察、决策能力以及对他人行为的理解,是安全驾驶的重要组成部分。安全性方面,换道行为与交通事故密切相关,不当的换道动作可能导致碰撞和危险情况的发生。因此,研究换道行为的安全性对提高驾驶员的行车安全意识至关重要。交通流畅性方面,单个车辆的不当换道可能引起交通拥堵,影响整体交通流畅性。通过研究合适的换道策略,可以有效减少交通堵塞,并提高道路通行效率。交通规则遵守方面,换道行为需要遵守国家和地区的交通法规,包括使用转向灯、观察盲区等。研究驾驶员对交通规则的理解和遵守情况,有助于改善交通秩序并减少交通事故发生率。人机交互方面,随着智能驾驶技术的发展,汽车换道行为也逐渐受到自动驾驶系统的影响。研究人机交互在换道过程中的作用,有助于设计更智能、安全的驾驶辅助系统。心理因素方面,驾驶员在进行换道决策时受到多种心理因素的影响,如注意力集中、反应速度等。了解驾驶员的心理特征和行为模式,可以帮助制定培训方案和改进交通管理措施。汽车换道行为作为驾驶中的基本操作之一,不仅关乎每位驾驶者的安全,也直接影响着整体交通秩序和效率。因此,深入研究汽车换道行为所涉及的各种因素,有助于改善交通安全、减少交通拥堵,提高驾驶质量和驾驶乐趣。
当人类驾驶车辆时,通常会观察周围的交通参与者并预测他们的未来状态,然后再开始新的驾驶操作,例如换道,换道是车辆行驶过程中常见而又危险的情况,尤其是在多车环境下,换道车辆与周围车辆的相对安全性非常重要。为了在这种复杂环境中安全行驶,自动驾驶汽车应该能够较为准确地预测附近交通参与者的未来状态。而往往在附近的车辆中,货车对自动驾驶汽车的影响更为明显。货车是道路上重要组成车辆类别,因其运动性能、车体大小、驾驶视野均不同于小汽车,导致货车在道路上的运动特征与小汽车有所不同。因此,在客货交互的复杂场景下,小汽车很大程度上受货车的影响,其轨迹也受到了相应制约。因此,需要分析货车对小汽车的影响,对小汽车轨迹进行精准预测。因此考虑客货交互的自动驾驶换道轨迹预测已成为自动驾驶的重要研究方向。
1.2 国内外研究现状
1.2.1 轨迹预测算法国内外研究现状
自80年代开始,自动驾驶汽车就被视为改善交通安全、交通堵塞、能源短缺等问题的有效解决方案[2-3],但至今为止,自动驾驶汽车在真实的城市交通流中行驶依旧面临着重重困难,其中一个主要问题就是如何与驾驶场景中的其他车辆进行安全且合理的交互,有经验的人类驾驶员能够预测驾驶场景中其他车辆未来的驾驶轨迹,从而规划出安全、合理、高效的行驶轨迹。准确预测他车驾驶轨迹不仅能减小自动驾驶汽车执行并道、换道、超车等特殊驾驶动作时发生危险的概率[4-5],还能提高自动驾驶汽车的行驶效率及行驶舒适性。但在真实的城市交通场景中,车辆的运动轨迹不仅受到道路几何结构、交通标识、交通规则等先验知识的约束,还取决于场景中其他动态交通参与者以及驾驶员主观驾驶意图等不确定性后验知识[6-7]。如图1a所示,当不考虑道路结构约束时,预测的未来轨迹为红色曲线,是不正确的。如图2b所示,目标车辆前方有一辆移动缓慢的大型卡车。在这种情况下,基于人类驾驶经验,目标车辆很可能会采取变道策略。因此,如何在预测过程中充分结合驾驶场景中的先验和后验知识,是提高长时轨迹预测精度,与其他车辆进行合理交互的关键所在。
图1 驾驶场景中的先验与后验知识对车辆未来轨迹的影响
如图2所示,根据轨迹预测模型的输入以及中间步骤的不同,以往研究的预测模型大概分为三类:基于物理约束的预测模型,基于行为的预测模型以及基于学习的预测模型。
图2 现有轨迹预测模型分类
(1)基于物理约束的预测模型
基于物理约束的预测模型将车辆表示为受物理定律支配的动态实体,通过将控制状态(如车轮转角、加速度等)、汽车特性(如车身自重)和道路环境因素(如静止摩擦系数)与车辆状态(如位置、航向、速度)的演化联系起来,并利用动力学和运动学模型来预测车辆未来的运动趋势。动力学模型基于拉格朗日方程分析车辆运动的平顺性和操纵的稳定性,并分析和建立不同力与车辆运动的关系,如路面与轮胎的作用力,但车辆的动力学模型在考虑了诸多的内都参数后会变得异常复杂,这种复杂的模型一般应用于车辆控制领域,对于轨迹预测面言[8],一般将车辆运动简化为二维平面上移动的由前轮驱动的两轮车辆啊。运动学模型则根据车辆的运动学参数之间的数学关系来描述车辆的运动,由于模型简单,轨迹预测的相关研究更多的采用运动学模型来反映车辆的运动,包括最简单的假设车辆运动输入保持不变的物理模型:假设车辆速度、加速度保持不变的物理模型。以及在车辆状态向量中引入偏航角和俯航率来反映车辆z轴变化,假设横摆角速度、速度和加速度保持不变的物理模型。将车辆状态向量中偏航角替换为转向角,能够获得考虑速度与偏航率之间关系的基于自行车模型的运动学表示,从而衍生出假设转向角、角速度、速度保持不变的物理模型[9-11],上述方法都是在满足车辆当前状态具有确定性以及运动学模型控制输入恒定的假设下预测车辆轨迹这类方法的优点是其计算效率很高,但由于忽略了车辆当前状态的不确定性以及车辆运动模型输入的不完整性和不确定性,导致其长期预测(超过一秒)结果不可靠[12]。一些研究针对以上问题对车辆当前状态的不确定性进行建模,例如对交通车辆当前状态以及经运动模型推导出的状态的不确定性基于卡尔曼滤波进行建模分析,从而得到具有不确定性的平均预测轨迹。但由于单峰正态分布不足以表示可能的车辆运动,所以研究者采用混合高斯矩阵对不确定进行建模,并利用切卡尔曼滤波器(SwitchingKalmanFilters)表示车辆可能的运动模型[13],针对运动模型控制输入变量具有不确定性的问题,采用蒙特卡罗法对控制输入变量进行随机采样,通过对控制输入变量不确定性进行建模,来提高运动轨迹的预测精度。基于物理约爽的预测模型只关注了车辆运动特性对运动轨迹的约束作用(动力学和运动学约束),但忽略了如道路结构(RoadGeometry)、交通规则等先验知识以及不可见的驾驶员主观意图等后验知识对车辆未来运动轨迹的影响,因此该类方法无法预测因驾驶场景中其他因素的变化导致车辆执行特定的操作(如减速、路口破速转弯等),仅限于低速短时预测。
(2)基于行为的预测模型
基于行为的预测模型假设车辆在驾驶场景中的运动过程对应于一系列预定义的机动行为,例如在路上直行场景中,车辆运动可以分为两种行为:直行与换道,每一种行为对应的车辆运动轨迹都具有相似的特征,一旦确定了车辆的行为,便可预测车辆未来的运动轨迹,从而将预测过程分成了两个部分;行为识别与轨
(3)基于学习的预测模型
基于学习的预测模型跳过了识别驾驶动作的步骤,直接根据目标车辆的历史观测信息输出预测轨迹,能够有效学习驾驶场景中的后验知识,并避免错误的驾驶动作识别和分类。近来,很多论文采用人工神经网络作为端到端模型预测车辆、自行车、行人的轨迹[14],作为一种针对于长期记忆问题的特殊循环神经网络型在考虑了诸多的内部参数后会变得异常复杂,这种复杂的模型一般应用于车辆控制领域,对于轨迹预测而言,一般将车辆运动简化为二维平面上移动的由前轮驱动的两轮车辆。
1.2.2 轨迹规划算法国内外研究现状
伴随着各项自动驾驶赛事的开展,自动驾驶技术得到了快速发展,斯坦福大学和卡内基梅隆大学率先在DARPA挑战赛提出了较为完整的自动驾驶汽车的系统架构,欧洲的 VIAC 项目和 KIT的 Daimler 描述了自动驾驶汽车系统架构中的不同处理阶段,其中环境感知、决策规划和控制执行是自动驾驶系统中最重要的组成部分[15],轨迹规划算法作为自动驾驶系统的基础和技术核心,其作用是在遵守车辆动力学及运动学、驾驶道路环境以及交通法规等时空约束条件的基础上,生成衔接车辆起点和终点的几何路径以及每个路径点对应的期望速度。
图3 自动驾驶构架示意图
轨迹规划的相关研究最早可追溯自移动机器人的发展与应用,其通过路径规划解释描述机器人行为,是机器人导航定位系统中的关键组成部分,与自动驾驶汽车的轨迹规划相比,用于移动机器人的轨迹规划只需在开放环境中搜索到达目标点的无碰撞轨迹即可,无需考虑如道路结构、交通规则等其他约束。Behringer等人在 PROMETHEUS 项目中首次实现了一种在视觉和路径生成算法的辅助下进行自动驾驶的车辆[16],自此,为了应对复杂驾驶场景的挑战,研究人员将用于移动机器人的轨迹规划算法针对如道路结构、交通规则等场景约束进行改进和优化,这些用于自动驾驶汽车的轨迹规划算法根据轨迹生成和搜索方式的不同可以分成基于图搜索、基于曲线插值、基于空间采样以及基于数值优化四种方法。
(1)基于图搜索方法
基于图搜索的方法通常基于经典A*(AStar)和D*(Dijkstra)算法进行改进,但通常不能满足车辆的非完整性约束,且路径平滑性较差。Boroujeni 等基于A算法提出了 FU-A算法,根据车速的不同调节栅格的大小,改善了路径平滑度[17];胡林等针对城市道路网,在传统的A*算法的代价函数中添加了道路交叉口的等待时间和能源消耗,降低了等待时间和能耗[18]。
(2)基于数值优化方法
常见的基于数值优化的换道轨迹规划算法有函数优化方法,基于函数优化的轨迹规划是一种在连续空间中寻找最优轨迹的方法,它通过优化一个代表轨迹的连续函数,找到一条满足约束条件的最优轨迹。周兵等人[19]设计了一种数值优化的方法,以轨迹最小曲率、最高可行驶车速来构建结构化道路下智能驾驶车辆换道轨迹的速度与路径优化模型,使智能驾驶车辆在换道避障过程中能够迅速、安全,同时保证了换道过程中的舒适性。Lim等人[20]使用基于采样的方法来规划智能驾驶车辆换道轨迹,由于换道轨迹规划具有针对驾驶环境连续元素的数学模型和低计算量以收敛凸函数中的最小值的优点,因此采用了数值优化的方法。
(3)基于曲线插值方法
B´ezier曲线换道轨迹、双曲正切曲线换道轨迹、样条线曲线换道轨迹、正弦曲线换道轨迹、Dubins曲线换道轨迹、螺旋线换道轨迹、多项式换道轨迹等。Funke等人[21]采用双基本路径的方法来规划智能驾驶车辆紧急变道轨迹,限制了紧急换道工况下的轨迹曲率,该换道轨迹规划方法可使智能驾驶车辆处于附着极限时完成换道。Mehdi等人[22]设计了一种基于分段贝塞尔曲线的避障算法,通过对交通场景中的障碍物检测,实时规划车辆的行驶轨迹,以满足避障约束。
(4)基于空间采样方法
常见的基于采样的换道轨迹规划算法有RRT算法、Lattice 算法等。RRT算法的全称为快速搜索随机树(Rapidly-exploring Random Tree)算法,该算法利用随机采样和树结构的方法,在搜索空间中迅速生成一棵树,以找到从起点到终点的最优路径。该算法可以解决高维空中的路径规划问题,但是无法进行路径的重规划。Lan等人[23]提出了一种基于两阶段采样策略的RRT算法,并设计一种算法来删除 RRT 返回路径的冗余路径点,提高了算法的搜索效率。虽然该算法可以快速的求解换道轨迹,但由RRT生成的换道轨迹不够平滑,存在抖动,无法直接作为智能驾驶车辆的换道轨迹。Lattice算法对智能驾驶车辆的运动轨迹进行采样,利用动态规划的方法求解最优轨迹,以保证智能驾驶车辆在约束条件下的最优换道路径。Zhang等人[24]基于Lattice算法设计了一种轨迹规划器,仿真结果表明,该规划器可以生成平滑的轨迹,使得智能驾驶车辆能够平顺的进行自主换道。
图4 忽视多车交互的轨迹规划示意图
现有轨迹规划研究大多将每个规划周期中其他交通参与者视为静态障碍物然后选择出与所有障碍物都不发生碰撞的最优轨迹[25]。如图4所示,自动驾驶汽车的感知系统检测到与其他交通参与者的距离,在不考虑交通参与者交互作用的情况下,轨迹规划器选择了图4a中蓝色虚线所示的更安全的轨迹,因为车辆A 距离自动驾驶汽车更远[26]。然而,经过几个连续的规划周期后[27]。如图4b所示,由于车辆 A 比车辆 B的速度慢,自动驾驶汽车会回到原来的车道,因此即使自动驾驶汽车可以在不考虑交通车辆未来运动轨迹的情况下实现自动驾驶[28],但其行为表现与人类驾驶员相距甚远。轨迹规划直接影响到行驶轨迹的安全性和可行性。在轨迹规划中利用预测结果是建模交通车辆与自动驾驶汽车交互作用的关键。然而,似乎很少有研究深入探讨基于交互性预测的轨迹规划方法,除了以下几种方法:Damerow和Eggert 提出了一种预测风险图,衡量不同策略的风险。然后利用RRT*算法寻找风险最低的最优轨迹[29]。在文献[30]中,提出了一种基于代价函数和意图预测融合的轨迹规划算法[31],该方法将基于驾驶策略的成本函数融合进预测模型中[32],使自动驾驶汽车实现交互性轨迹规划。然而其预测模型假设每辆车与前车的未来运动保持一个预先计算的最小安全距离,该预测模型的假设似乎过于理想化[33]。此外,成本函数的权重参数较多,导致参数调整复杂。
1.3 研究内容与技术路线
1.3.1 研究内容
现阶段关于车辆换道行为的研究主要聚焦于换道车辆本身,而换道行为与周边交通环境的交互作用有待完善。在复杂交通场景中,关于车辆换道行为的预测对周边车辆运动状态的考虑并不完善,存在实时性较差、换道风险的研判能力较弱的问题。因此,本文考虑换道车辆与周边车辆的交互行为,对换道车辆的换道轨迹进行预测。
本文的主要研究内容主要包括以下几个部分:
第一章,绪论。阐述论文的研究背景及研究意义,梳理研究现状,分析了基于数学公式的轨迹模型、基于车辆动力学的轨迹模型以及基于数据驱动的轨迹模型的优缺点,分析了基于图搜索、基于曲线插值、基于空间采样以及基于数值优化四种轨迹规划算法,并从实际出发,确定研究目标、研究方法以及技术路线。
第二章,数据描述与数据处理。首先对微观交通流理论研究的常用数据集包括NGSIM以及HighD数据集进行对比,考虑数据精度、数据处理难易程度、当地驾驶规则与我国驾驶规则是否相似等因素,确定了德国HighD数据集为换道行为研究的数据集。对HighD数据集进行清洗与预处理,分析轨迹数据集的概况,确定了换道轨迹的提取方式。
1.3.2 技术路线
本文的研究思路始于数据处理与分析,选用德国HighD数据集作为车辆换道行为的基础研究数据,分析数据集的车型、行驶方向、速度、加速度、换道次数等数据的分布情况,确定换道轨迹的提取方式。依据提取出的换道轨迹,对车辆的换道行为进行分析,分析换道车辆本身运动状态的统计学分布,再对换道车辆与周边车辆运动状态进行相关性分析,探究换道车辆与周边车辆的相互作用关系。考虑到换道车辆与周边车辆的相互作用关系,建立基于Social-LSTM的换道轨迹预测模型,最后验证预测模型准确性并进行结果分析。
本文的技术路线如图 1.1 所示。
2 数据描述与数据预处理
本章将介绍用于换道行为分析的数据集——citysim数据集,并对该数据集进行数据清洗和预处理,分析数据集的车辆轨迹数据概况,确定换道轨迹数据的提取方式,为后文分析车辆换道行为提供数据基础。
2.1 citysim数据集
该数据集由美国中佛罗里达大学Dr. Aty团队的郑欧博士,岳李圣飒博士,博士生王子衿等人于2022年推出,如图1所示,相比其他常用的开源数据集年份较新,道路场景最多。
图2.1 CitySim与多个知名开源轨迹数据集的横向对比
Citysim数据集数据量最大,CitySim数据集提供超过来自多个国家不同天气、不同地点的无人机航拍数据,时长总计超过1200分钟, 包含万辆车的轨迹;道路类型最全,数据集采集了高速公路基本路段、高速公路匝道汇入/汇出、城市快速路、合流分流交织区、信控交叉口、环岛等多个地点, 是目前行业内覆盖范围最全的数据集,可满足研究的多样化需求;精度最高/更微观,如图1所示,是行业内唯一提供7个车辆关键点(BoundingBox)坐标信息的数据集,包括车辆中心点、四个角以及车头车尾中心点,如图2所示,数据集对每辆车提供精确的7个关键点,每个关键点都经过人工修复校正。每个数据框都经过人工检查/矫正,以确保数据精度;行业内唯一个集 Sumo-Carla仿真地图与车辆轨迹与一身的数据集,CitySim数据集提供航拍地点的高精度3D仿真地图以支持数字孪生相关研究。地图基于GIS信息制作,支持Carla、Sumo和Unity等平台的仿真。此外,数据集还提供与轨迹对应的信号灯配时数据。Citysim数据集因为其高精度、数据年份比较新,近年来,被许多国内外学者用于跟驰行为、换道行为、换道安全等多领域的研究,选取高精度的 HighD 数据集可以在保证准确度的前提下进一步挖掘各 种微观驾驶行为的影响特性。
图2.2 7个车辆关键点
图2.3 轨迹提取演示
Citysim数据集有多个道路场景,如图4所示,考虑客货交互的场景,本文选取地点Freeway C作为研究数据集。