编者按:运动规划作为一种具有多个非线性约束的高维优化问题,需要消耗大量的计算资源,并且由于场景的复杂性和实时性,不是总能快捷简单的得到最优轨迹,这对规划算法的鲁棒性和实用性有着较高的要求。本文提出了一种轨迹监控策略,同时进行换道轨迹规划和监控轨迹规划,在前者未能规划出轨迹或者规划超时,系统将以监控轨迹作为输出,保证车辆换道的稳定性和可行性。为满足车辆运动约束以及实时性要求,将采用基于B样条的方法来规划连续曲率路径。基于RRT的方法可以作为保持算法完备性的补充。然后,监控轨迹主要遵循无碰撞要求,通过减速规划以保持车辆实时运动的稳定性。
本文译自《A Novel Robust Lane Change Trajectory Planning Method for Autonomous Vehicle》,文章出自会议IV2019,作者为来自同济大学智能汽车研究所的熊璐教授、曾德全博士等。
摘要:本文提出了一种新颖的自动驾驶车辆的换道轨迹规划方法。由于难以准确地获得其他车辆的运动轨迹,自动驾驶车辆的运动轨迹不能总是快速简单的得到。此外,运动规划作为一种具有多个非线性约束的高维优化问题,需要大量计算资源才能找到正确的解决方案。为此,我们提出了一种轨迹监控策略,同时进行换道轨迹规划和监控轨迹规划,保证车辆换道的稳定性和可行性。在前者未能规划出轨迹或者规划超时,则系统将以监控轨迹作为输出。为满足车辆运动约束以及实时性要求,将采用基于B样条的方法来规划连续曲率路径。基于RRT的方法可以作为保持算法完备性的补充。然后,监控轨迹主要遵循无碰撞要求,通过减速规划以保持车辆实时运动的稳定性。结果表明,基于B样条的方法和基于RRT的方法都可以产生曲率连续路径并满足运动限制,但两者都有可能超时。特别是,随着环境变得更加复杂,成功率也面临挑战。
1. 引言
近几十年来,自动驾驶技术作为一种前景广阔的技术取得了良好的发展,并已经有大量的技术产品投入应用[1-3]。 与人类相比,智能驾驶系统由于其快速操作,超出视觉范围的感知和准确的决策,有望提高驾驶安全性,舒适性,交通效率和能源经济性[4-6]。
为了安全快速地将智能车辆从当前位置导航到目标点,必须设计一种用于生成轨迹的鲁棒性高的运动规划方法[7]。如文献 [1-2]所述,运动规划架构主要包括基于图搜索的规划方法,基于采样的方法,插值曲线规划法和数值优化法。Dijkstra [8]和A * [9]是基于图表搜索的较常见的规划方法。先将环境离散化之后,通过遍历网格找到最短路径,无论网格是相同大小[10]还是可变粒度[11]。尽管智能车中使用的算法有很多变种,如D * [12],ARA * [13],AD* [14],但仍然很难选择网格分辨率并跟踪由连接网格组成的路径[15]。与离散的环境方法不同,基于采样的规划方法(如RRT [16])可以通过在连续空间中扩展节点直到达到目标位置来产生有效路径。应用于智能汽车的算法的最新变体是RRT * [17]和CL-RRT [18],但是,此类规划的结果不是最优的,生成的路径曲折并且由于随机采样的原因,使得车辆难以直接进行轨迹跟踪。插值曲线规划方法能够实现曲率连续性,如多项式曲线[19],回旋曲线[20],贝塞尔曲线[21]和B样条[22],它需要在一组给定的路径点基础上来拟合出一条新的路径。由于自动驾驶车辆的场景是实时动态的,因此难以遍历所有环境以获得路径点。通过构建障碍约束,起点约束,目标点约束,模型约束和优化目标函数(例如,最短路径和最舒适等约束),数值优化[23-25]可以在没有路点的情况下规划最佳平滑轨迹。然而,这种方法本质上是一种具有多个非线性约束的高维优化问题,需要大量资源才能找到正确的解决方案。文献[26-27]表明,为了产生满足多目标约束的泊车轨迹,CPU时间通常不小于300ms,甚至40000ms。此外,还有规划失效的可能性[15]。
为了提高运动规划算法的鲁棒性,避免无路可走的困境,我们提出了一种轨迹监控策略,同时产生换道轨迹和监控轨迹。如果前者没有产生安全轨迹或超时,则监控轨迹将作为结果输出。否则,输出是换道轨迹。为了满足车辆运动的约束和实时规划的要求,将采用基于B样条的方法来规划车道变换的连续曲率路径。并且基于RRT的方法作为保持车道变换计划算法的完整性的补充。然后,监控轨迹主要遵循无碰撞要求,通过减速规划以保持车辆稳定性。本文的其余部分结构如下:在第二部分,描述了一种轨迹监控的策略。第三部分描述了基于B样条的换道路径规划方法。第四部分描述了基于RRT算法的换道轨迹规划方法。第五部分描述了速度规划方法。第六部分实现并分析了典型车道变换场景的轨迹规划算法。最后,第七部分介绍了本文的结论。
通常情况下,难以准确地掌握周围车辆的运动轨迹,这意味着自动驾驶车辆的换道轨迹并不总是容易快速获得。而且,运动规划的本质是一种具有多个非线性约束的高维优化问题,需要大量的资源才能找到正确的解。因此,规划并不是总能够得到正确的路径。为了避免碰撞,有必要建立一个安全策略,就像车辆组件的功能安全一样,可以在必要时提供最安全的轨迹。因此,我们提出了一种轨迹监控策略,如图1所示,用于车道变换场景。如果驾驶任务保持不变且当前轨迹安全,则应保持当前轨迹。相反,换道轨迹和监控轨迹将同时开始规划。如图2所示,通过基于B样条和基于RRT的方法生成车道变换轨迹(No.2的浅蓝色曲线),并且在减速时生成监视轨迹(No.3的黄线) 。如果前者没有生成安全轨迹或超时,则监监控轨迹将作为结果输出。否则,输出的是换道轨迹。