变压器参数测定

  1. 变压器参数测定的概念

    • 变压器参数测定是指通过实验手段来确定变压器的各种电气参数的过程。这些参数包括电阻、电抗、电导、电纳等,它们对于分析变压器的性能、计算变压器在不同工况下的电压变化、损耗以及效率等方面具有至关重要的作用。例如,在电力系统的设计和运行中,准确知道变压器的参数才能合理地进行潮流计算和电压调整。
  2. 变压器参数测定的原理

    • 绕组电阻测定原理
      • 基于欧姆定律,通过在变压器绕组两端施加直流电压,测量流过绕组的直流电流,根据公式 R = U / I R = U / I R=U/I(其中 R R R为电阻, U U U为电压, I I I为电流)来计算绕组电阻。对于大型变压器,由于绕组电感较大,在施加直流电压时,需要等待一段时间,直到电流稳定后再进行测量,以避免电感的影响。
    • 漏电抗测定原理
      • 利用短路试验来测定变压器的漏电抗。将变压器的一侧绕组短路,在另一侧绕组施加适当的电压,使绕组中流过额定电流。此时,根据变压器的短路阻抗计算公式 Z k = U k I 1 N Z_{k}=\frac{U_{k}}{I_{1N}} Zk=I1NUk(其中 Z k Z_{k} Zk为短路阻抗, U k U_{k} Uk为短路电压, I 1 N I_{1N} I1N为一次侧额定电流),由于短路试验时电阻压降相对电抗压降较小,可以近似认为短路阻抗主要由漏电抗组成,通过测量短路电压和额定电流来计算漏电抗。
    • 励磁电导和电纳测定原理
      • 通过空载试验来确定变压器的励磁电导和电纳。在变压器的一侧绕组施加额定频率的额定电压,另一侧绕组开路。此时,输入的功率主要用于供给铁芯损耗和建立磁场。根据空载电流和空载损耗,可以计算出励磁电导和电纳。励磁电导 G m = P 0 U 1 N 2 G_{m}=\frac{P_{0}}{U_{1N}^{2}} Gm=U1N2P0(其中 P 0 P_{0} P0为空载损耗, U 1 N U_{1N} U1N为一次侧额定电压),它反映了铁芯损耗的大小;励磁电纳 B m = I 0 sin ⁡ φ 0 U 1 N B_{m}=\frac{I_{0}\sin\varphi_{0}}{U_{1N}} Bm=U1NI0sinφ0(其中 I 0 I_{0} I0为空载电流, φ 0 \varphi_{0} φ0为空载电流的相位角),它与建立磁场的无功功率有关。
  3. 变压器参数测定的过程

    • 绕组电阻测量过程
      • 对于小型变压器,可以直接使用双臂电桥或单臂电桥来测量绕组电阻。首先将电桥的测试夹连接到变压器绕组的两端,调节电桥平衡,读取电阻值。对于大型变压器,需要使用专门的直流电阻测试仪。在测试时,先将测试仪的输出线连接到变压器绕组的两端,开启测试仪,逐渐升高输出电压,观察电流的变化,当电流稳定后,记录电压和电流值,计算电阻。
    • 漏电抗测量过程(短路试验)
      • 以双绕组变压器为例,将二次绕组短路,一次绕组通过调压器连接到电源。缓慢升高一次绕组的电压,同时观察电流表,当一次绕组电流达到额定电流时,记录此时一次绕组的电压 U k U_{k} Uk和电流 I 1 N I_{1N} I1N。根据短路阻抗公式计算短路阻抗 Z k Z_{k} Zk,如果需要单独计算漏电抗 X k X_{k} Xk,还需要测量绕组电阻 R k R_{k} Rk,通过公式 X k = Z k 2 − R k 2 X_{k}=\sqrt{Z_{k}^{2}-R_{k}^{2}} Xk=Zk2Rk2 计算。
    • 励磁电导和电纳测量过程(空载试验)
      • 将变压器的一次绕组接入额定频率的电源,二次绕组开路。用电压表测量一次绕组的电压 U 1 N U_{1N} U1N,用电流表测量空载电流 I 0 I_{0} I0,用功率表测量空载损耗 P 0 P_{0} P0。根据上述的计算公式计算励磁电导 G m G_{m} Gm和励磁电纳 B m B_{m} Bm。在测量过程中,要确保电压表、电流表和功率表的精度满足要求,并且测量环境的温度、湿度等因素对测量结果的影响要尽量小。
  4. 变压器参数测定的分类

    • 离线参数测定
      • 这是最常见的方式,即将变压器从运行系统中脱离出来,在实验室或专门的测试场地进行参数测量。优点是测量环境相对稳定,干扰因素少,测量精度高。例如,在变压器制造完成后,在工厂的测试车间进行离线参数测定,以验证变压器是否符合设计要求。
    • 在线参数测定
      • 在线参数测定是在变压器正常运行的情况下进行参数测量。这种方法不影响变压器的正常供电,但测量难度较大,因为运行中的变压器会受到电网电压波动、负载变化等多种因素的干扰。通常需要采用特殊的测量仪器和复杂的测量算法。例如,利用电力系统中的监测装置,通过实时采集变压器的运行数据,如电压、电流、功率等,结合先进的信号处理技术和计算方法来估算变压器的参数。
  5. 变压器参数测定的用途

    • 变压器性能评估
      • 通过参数测定,可以评估变压器的性能是否符合设计标准。例如,比较实测的短路阻抗与设计值,判断变压器的短路性能是否良好。如果短路阻抗过大,可能会导致变压器在短路时产生过高的电压降,影响供电质量;如果短路阻抗过小,则可能会使短路电流过大,对变压器本身和连接的设备造成损害。
    • 电力系统分析和计算
      • 在电力系统的潮流计算、短路电流计算和稳定性分析等方面,变压器参数是必不可少的。例如,在潮流计算中,需要根据变压器的电阻、电抗等参数来计算变压器两端的电压变化和功率损耗,从而确定电力系统中各节点的电压和功率分布。在短路电流计算中,变压器的短路阻抗直接影响短路电流的大小,对于选择电气设备的短路容量和保护装置的整定具有重要意义。
    • 变压器故障诊断
      • 变压器参数的变化可以反映变压器的故障情况。例如,当变压器绕组发生匝间短路时,绕组电阻会减小,漏电抗也会发生变化。通过定期测量变压器的参数,并与历史数据进行对比,可以及时发现变压器的潜在故障,采取相应的维修措施,避免故障的扩大。
  6. 相关计算公式

    • 绕组电阻 R = U / I R = U / I R=U/I
    • 短路阻抗 Z k = U k I 1 N Z_{k}=\frac{U_{k}}{I_{1N}} Zk=I1NUk
    • 漏电抗(已知短路阻抗和绕组电阻) X k = Z k 2 − R k 2 X_{k}=\sqrt{Z_{k}^{2}-R_{k}^{2}} Xk=Zk2Rk2
    • 励磁电导 G m = P 0 U 1 N 2 G_{m}=\frac{P_{0}}{U_{1N}^{2}} Gm=U1N2P0
    • 励磁电纳 B m = I 0 sin ⁡ φ 0 U 1 N B_{m}=\frac{I_{0}\sin\varphi_{0}}{U_{1N}} Bm=U1NI0sinφ0
  7. 实例

    • 有一台双绕组变压器,额定容量 S N = 100 k V A S_{N}=100kVA SN=100kVA,一次侧额定电压 U 1 N = 10 k V U_{1N}=10kV U1N=10kV,二次侧额定电压 U 2 N = 0.4 k V U_{2N}=0.4kV U2N=0.4kV。进行短路试验时,当一次绕组电流达到额定电流 I 1 N = 100 k V A / 10 k V = 10 A I_{1N}=100kVA/10kV = 10A I1N=100kVA/10kV=10A时,测得一次绕组的短路电压 U k = 500 V U_{k}=500V Uk=500V,绕组电阻 R k = 1.5 Ω R_{k}=1.5\Omega Rk=1.5Ω。进行空载试验时,一次绕组施加额定电压 U 1 N = 10 k V U_{1N}=10kV U1N=10kV,测得空载电流 I 0 = 0.5 A I_{0}=0.5A I0=0.5A,空载损耗 P 0 = 1 k W P_{0}=1kW P0=1kW
    • 计算短路阻抗和漏电抗
      • 短路阻抗 Z k = U k I 1 N = 500 V 10 A = 50 Ω Z_{k}=\frac{U_{k}}{I_{1N}}=\frac{500V}{10A}=50\Omega Zk=I1NUk=10A500V=50Ω
      • 漏电抗 X k = Z k 2 − R k 2 = 5 0 2 − 1. 5 2 ≈ 49.98 Ω X_{k}=\sqrt{Z_{k}^{2}-R_{k}^{2}}=\sqrt{50^{2}-1.5^{2}}\approx49.98\Omega Xk=Zk2Rk2 =5021.52 49.98Ω
    • 计算励磁电导和电纳
      • 励磁电导 G m = P 0 U 1 N 2 = 1000 W ( 10000 V ) 2 = 1 × 1 0 − 5 S G_{m}=\frac{P_{0}}{U_{1N}^{2}}=\frac{1000W}{(10000V)^{2}}=1\times10^{-5}S Gm=U1N2P0=(10000V)21000W=1×105S
      • 设空载电流滞后电压的相位角 φ 0 = 8 5 ∘ \varphi_{0}=85^{\circ} φ0=85(一般情况下通过测量或估算得到), sin ⁡ φ 0 = sin ⁡ 8 5 ∘ ≈ 0.996 \sin\varphi_{0}=\sin85^{\circ}\approx0.996 sinφ0=sin850.996
      • 励磁电纳 B m = I 0 sin ⁡ φ 0 U 1 N = 0.5 A × 0.996 10000 V = 4.98 × 1 0 − 5 S B_{m}=\frac{I_{0}\sin\varphi_{0}}{U_{1N}}=\frac{0.5A\times0.996}{10000V}=4.98\times10^{-5}S Bm=U1NI0sinφ0=10000V0.5A×0.996=4.98×105S
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

请向我看齐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值