参考链接1
参考链接2
BERT 模型的训练数据集通常是以预训练任务的形式来构建的,其中包括两个主要任务:Masked Language Model (MLM) 和 Next Sentence Prediction (NSP)。下面简要介绍这两个任务在数据集中的格式:
Masked Language Model (MLM)
- 在 MLM 中,输入文本会被处理为一组 token 序列,其中一些 token 会被随机选择并替换为特殊的 [MASK] 标记。
- 数据集中的每条样本是一个包含 [CLS] 句子 A [SEP] 句子 B [SEP] 的序列。
- 句子 A 和句子 B 可能是相邻的句子,也可能是来自不同文本的句子。
- 对于每个样本,一部分 token 会被随机选择并替换为 [MASK] 标记。
- 训练时,BERT 模型需要预测这些被遮挡的 token。
举个例子
Next Sentence Prediction (NSP)
- NSP 任务通过判断两个句子是否在原始文本中相邻来训练模型&#