凸优化学习-(九)凸函数

凸优化学习

今天开始学习凸函数了。

学习笔记

一、凸函数的定义

1

f : R n → R 为 凸 ⇔ dom f 为 凸    ∀ x , y ∈ dom f    0 ≤ θ ≤ 1 有 f ( θ x + ( 1 − θ ) y ≤ θ f ( x ) + ( 1 − θ ) f ( y ) f:R^n\rightarrow R为凸\Leftrightarrow \text{dom}f 为凸\ \ \forall x,y \in \text{dom}f\ \ 0 \le \theta \le 1有 \\ f(\theta x+(1-\theta)y \le \theta f(x)+(1-\theta)f(y) f:RnRdomf  x,ydomf  0θ1f(θx+(1θ)yθf(x)+(1θ)f(y)

2、一阶条件

若 f 可 微 , 则 f : R n → R 为 凸 ⇔ dom f 为 凸    ∀ x , y ∈ dom f , 有 f ( y ) ≥ f ( x ) + ∇ f T ( x ) ( y − x ) 若f可微,则f:R^n\rightarrow R为凸\Leftrightarrow \text{dom}f 为凸\ \ \forall x,y\in \text{dom}f,有\\ f(y)\ge f(x)+\nabla f^T(x)(y-x) ff:RnRdomf  x,ydomf,f(y)f(x)+fT(x)(yx)
本质就是对于凸函数的一点做切线,凸函数要高于这条切线。
在这里插入图片描述

3、二阶条件

若 f : R n → R 二 阶 可 微 , 则 f : R n → R 为 凸 ⇔ dom f 为 凸 ∇ 2 f ( x ) ≥ 0    ∀ x ∈ dom f 若f:R^n \rightarrow R 二阶可微,则f:R^n\rightarrow R为凸\Leftrightarrow \text{dom}f 为凸\\ \nabla^2f(x) \ge 0\ \ \forall x \in \text{dom}f f:RnRf:RnRdomf2f(x)0  xdomf
即二阶偏导大于等于零, Hessain 矩 阵 \text{Hessain}矩阵 Hessain半正定。

二、一些例子

例1
凸函数的扩展依然是凸函数。
凸函数的扩展,形如:
f : R n → R 为 凸   dom f ∈ R n f ~ = { f ( x )      x ∈ dom f + ∞       x ∉ dom f f:R^n\rightarrow R为凸\ \ \text{dom}f\in R^n\\ \widetilde{f}=\left\{ \begin{aligned} f(x) \ \ \ \ x\in \text{dom}f\\ + \infty\ \ \ \ \ x\notin \text{dom}f \end{aligned} \right. f:RnR  domfRnf ={f(x)    xdomf+     x/domf

例2
二次函数,形如:
f ( x ) = 1 2 x T P x + q T x + r f : R n → R   dom f = R n P ∈ S n    q ∈ R n    r ∈ R f(x)=\frac{1}{2}x^T\textbf{P}x+q^Tx+r\\ f:R^n\rightarrow R \ \ \text{dom}f=R^n\\ \textbf{P}\in \textbf S^n\ \ q\in R^n \ \ r\in R f(x)=21xTPx+qTx+rf:RnR  domf=RnPSn  qRn  rR
∇ f 2 ( x ) = P \nabla f^2(x)=\textbf{P} f2(x)=P正定时二次函数为凸。

例3
形如:
f ( x ) = 1 x 2    x ≠ 0    x ∈ R f(x)=\frac{1}{x^2}\ \ x\neq0\ \ x\in R f(x)=x21  x=0  xR
即使 f ′ ′ ( x ) = 6 x − 4 > 0 f''(x)=6x^{-4}>0 f(x)=6x4>0,但由于它的定义域非凸,因此它不是凸函数。

例4
仿射函数,形如:
f ( x ) = A x + b f(x)=Ax+b f(x)=Ax+b
其中 f ′ ′ ( x ) = 0 f''(x)=0 f(x)=0,因此它既是凸的又是凹的。
例5
指数函数,形如:
f ( x ) = e − x    x ∈ R f(x)=e^{-x}\ \ x\in R f(x)=ex  xR
是凸的。

个人思考

判断一个函数是凸的,用定义其实是最直接但是难度比较高的方法。我觉得应当记住一些典型的凸函数如仿射函数、Hessain矩阵半正定的二次函数等,它们经过组合会产生很多新的函数,判断这些函数是否为凸只要看它们组合的方法是否为保持函数凸性的方法就可以了。

纸质笔记

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 2
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值