P14 保证函数凸性

P14 保证函数凸性

保证函数凸性

非负加权和
f i . . . f m f_i...f_m fi...fm 为凸,则 f = ∑ i = 1 m w i f i f=\sum_{i=1}^m w_i f_i f=i=1mwifi 为凸 , w i ≥ 0 , ∀ i w_i \geq 0 , \forall i wi0,i

证:
f , g f,g f,g都是凸函数,有 f , g f,g f,g的二阶导数都是非负的;根据导数的运算法则有: ( f + g ) (f+g) (f+g) 的二阶导数等于 f , g f,g f,g 的二阶导数相加,因此 ( f + g ) (f+g) (f+g) 的二阶导数是非负的,所以 ( f + g ) (f+g) (f+g) 是凸函数。

f ( x , y ) f(x,y) f(x,y), 对任意 y ∈ A y \in A yA f ( x , y ) \quad f(x,y) f(x,y) 均为凸
( x , y ) (x,y) (x,y) jointly convex
w ( y ) ≥ 0 , ∀ y ∈ A w(y) \geq 0, \forall y \in A w(y)0,yA
g ( x ) = ∫ y ∈ A w ( y ) f ( x , y ) d y g(x) = \int_{y \in A} w(y) f(x,y) dy g(x)=yAw(y)f(x,y)dy 为凸

仿射映射
f : R n ↦ R A ∈ R n ∗ m b ∈ R n f:R^n \mapsto R \quad A \in R^{n*m} \quad b \in R^n f:RnRARnmbRn
g ( x ) = f ( A x + b ) d o m g = { x ∣ A x + b ∈ d o m f } g(x)=f(Ax+b) \quad dom g = \lbrace x|Ax+b \in dom f \rbrace g(x)=f(Ax+b)domg={xAx+bdomf}
证:
x , y ∈ d o m g 0 ≤ θ ≤ 1 x,y \in dom g \quad 0 \leq \theta \leq 1 x,ydomg0θ1
g ( θ x + ( 1 − θ ) y ) = f ( θ A x + ( 1 − θ ) A y + b ) = f ( θ ( A x + b ) + ( 1 − θ ) ( A y + b ) ) ≤ θ f ( A x + b ) + ( 1 − θ ) f ( A y + b ) = θ g ( x ) + ( 1 − θ ) g ( y ) \begin{aligned} g(\theta x + (1-\theta)y)&=f(\theta Ax + (1-\theta)Ay + b)\\ &=f(\theta(Ax+b)+(1-\theta)(Ay+b)) \\ & \leq \theta f(Ax+b) + (1-\theta)f(Ay +b) \\ &= \theta g(x) + (1-\theta)g(y) \end{aligned} g(θx+(1θ)y)=f(θAx+(1θ)Ay+b)=f(θ(Ax+b)+(1θ)(Ay+b))θf(Ax+b)+(1θ)f(Ay+b)=θg(x)+(1θ)g(y)
所以:仿射函数为凸函数

f i R n ↦ R , i = 1... m f_i \quad R^n \mapsto R,i=1...m fiRnR,i=1...m为凸 A ∈ R n , b ∈ R A \in R^n,b \in R ARn,bR
g ( x ) = A T [ f 1 ( x ) . . . . f m ( x ) ] T + b g(x) = A^T[f_1(x)....f_m(x)]^T+b g(x)=AT[f1(x)....fm(x)]T+b
不能保证A都是正的,不是凸函数

两个函数的极大值函数
f 1 , f 2 f_1,f_2 f1,f2为凸,定义
f ( x ) = m a x { f 1 ( x ) , f 2 ( x ) } f(x)=max \lbrace f_1(x),f_2(x) \rbrace f(x)=max{f1(x),f2(x)}
d o m f = d o m f 1 ⋂ d o m f 2 dom f=dom f_1 \bigcap dom f_2 domf=domf1domf2
设:
x , y ∈ d o m f 0 ≤ θ ≤ 1 x,y \in dom f \quad 0\leq\theta \leq 1 x,ydomf0θ1
f ( θ x + ( 1 − θ ) y ) = m a x { f 1 ( θ x + ( 1 − θ ) y ) , f 2 ( θ x + ( 1 − θ ) y ) } ≤ m a x { θ f 1 ( x ) + ( 1 − θ ) f 1 ( y ) , θ f 2 ( x ) + ( 1 − θ ) f 2 ( y ) } ≤ m a x { θ f 1 ( x ) , θ f 2 ( x ) } + m a x { ( 1 − θ ) f 1 ( y ) , ( 1 − θ ) f 2 ( y ) } = θ f ( x ) + ( 1 − θ ) f ( y ) \begin{aligned} f(\theta x + (1-\theta)y) &=max \lbrace f_1(\theta x + (1-\theta)y), f_2(\theta x + (1-\theta)y) \rbrace \\ &\leq max \lbrace \theta f_1(x) + (1-\theta)f_1(y),\theta f_2(x) + (1-\theta)f_2(y) \rbrace \\ &\leq max \lbrace \theta f_1(x), \theta f_2(x) \rbrace + max \lbrace (1-\theta)f_1(y), (1-\theta)f_2(y) \rbrace \\ &=\theta f(x) + (1-\theta)f(y) \end{aligned} f(θx+(1θ)y)=max{f1(θx+(1θ)y),f2(θx+(1θ)y)}max{θf1(x)+(1θ)f1(y),θf2(x)+(1θ)f2(y)}max{θf1(x),θf2(x)}+max{(1θ)f1(y),(1θ)f2(y)}=θf(x)+(1θ)f(y)
在这里插入图片描述

例:
向量中r个最大元素的和, x ∈ R n x \in R^n xRn
x [ i ] x[i] x[i] 第i大元素
f ( x ) = ∑ i = 1 r x [ i ] f(x)=\sum_{i=1}^r x[i] f(x)=i=1rx[i]
f ( x ) = max ⁡ { x i 1 + . . . + x i r ∣ 1 ≤ i 1 . . . ≤ i r ≤ n } f(x)=\max \lbrace x_{i1} + ... + x_{ir} |1 \leq i_1... \leq i_r \leq n \rbrace f(x)=max{xi1+...+xir1i1...irn}

无限个凸函数极大值
f ( x , y ) f(x,y) f(x,y)对于x为凸, ∀ y ∈ A \forall y \in A yA
g = s u p y ∈ A f ( x , y ) g=sup_{y \in A}f(x,y) g=supyAf(x,y)

例:
实对称阵的最大特征值
f ( x ) = λ m a x ( x ) d o m f = S m f(x) = \lambda max (x) \quad dom f = S^m f(x)=λmax(x)domf=Sm
x y = λ y xy = \lambda y xy=λy
y T x y = y T λ y y^T xy = y^T \lambda y yTxy=yTλy
y T x y = λ ∣ ∣ y ∣ ∣ 2 2 y^T xy = \lambda ||y||_2^2 yTxy=λy22
λ = y T x y ∣ ∣ y ∣ ∣ 2 2 \lambda = \frac{y^T xy }{||y||_2^2} λ=y22yTxy

λ = y T x y ∣ ∣ y ∣ ∣ 2 = 1 \lambda = y^T xy \quad ||y||_2=1 λ=yTxyy2=1
λ m a x ( x ) = s u p { y T x y    ∣    ∣ ∣ y ∣ ∣ 2 = 1 } \lambda max(x)=sup \lbrace y^T xy \;| \;||y||_2=1 \rbrace λmax(x)=sup{yTxyy2=1}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值