单应性(Homography)变换与单应性矩阵的求解

单应性(Homography)变换


单应性变换的严格数学定义请参考:

  • 《Multiple View Geometry in Computer Vision -2nd Edition》 by Richard Hartley, Andrew Zisserman
  • 第2.3节Projective transformations

1. 概念

  • 单应性变换又叫投影变换:应用在平面坐标变换中:

    • 平面投影变换是在三元素向量的齐次坐标下进行的线性变换,他由一个3×3的非奇异变换矩阵 H H H表示,具体如下:
    • image-20220327093510703
    • x ′ x^{'} x x x x都是齐次坐标,一般的有: x 3 ′ = x 3 = 1 x_{3}^{'}=x_{3}=1 x3=x3=1
  • 单应性矩阵

    • 单应矩阵描述两个平面上的对应点之间的变换关系
    • 同一个平面在任意坐标系之间都可以建立单应性变换关系;
    • 如(a):plannar surface上的X点可以通过单应性矩阵 H 1 H_{1} H1 H 2 H_{2} H2变换到image1image2,(b)和(c)同理。
    • image-20220327094051363

2. 在CV方面的应用

  • 图像校正、图像拼接、相机位姿估计、视觉SLAM等。

  • 图像校正

    • image-20220316150131274
  • 视角变化

    • image-20220316150214922
  • 图像拼接

    • image-20220316150319015
    • image-20220316150338667
  • AR

    • image-20220316150413125

3. 求解单应性矩阵

3.1 假设

  • 首先,我们假设两张图像中的对应点对齐次坐标为 P x y = ( x , y , 1 ) T P_{xy}=(x,y,1)^{T} Pxy=(x,y,1)T P u v = ( u , v , 1 ) T P_{uv}=(u,v,1)^{T} Puv=(u,v,1)T,单应矩阵H定义为:
    • H = [ h 11 h 12 h 13 h 21 h 22 h 23 h 31 h 32 h 33 ] H=\begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} H=h11h21h31h12h22h32h13h23h33
    • [ u v 1 ] = s [ h 11 h 12 h 13 h 21 h 22 h 23 h 31 h 32 h 33 ] [ x y 1 ] ( 1 ) \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} =s \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}\begin{bmatrix} x \\ y \\ 1 \end{bmatrix}\qquad\qquad\qquad\qquad\qquad\qquad(1) uv1=sh11h21h31h12h22h32h13h23h33xy1(1)

3.2 性质

  • 这里使用的是齐次坐标系,也就是说可以进行任意尺度的缩放(s为尺度因子),也就是说把H乘以任意一个非零常数k并不改变上式结果,无非就是尺度因子s有所改变。
    • 比如我们把H乘以 1 h 33 \frac{1}{h_{33}} h331可以得到:
      • H ′ = 1 h 33 H = 1 h 33 [ h 11 h 12 h 13 h 21 h 22 h 23 h 31 h 32 h 33 ] = [ h 11 ′ h 12 ′ h 13 ′ h 21 ′ h 22 ′ h 23 ′ h 31 ′ h 32 ′ 1 ] H'=\frac{1}{h_{33}}H=\frac{1}{h_{33}}\begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}=\begin{bmatrix} h_{11}' & h_{12}' & h_{13}' \\ h_{21}' & h_{22}' & h_{23}' \\ h_{31}' & h_{32}' & 1 \end{bmatrix} H=h331H=h331h11h21h31h12h22h32h13h23h33=h11h21h31h12h22h32h13h231
      • 而上述等式依然成立
    • 同理H乘以 1 ∑ i = 1 3 ∑ j = 1 3 h i j 2 \frac{1}{\sqrt{\sum_{i=1}^3\sum_{j=1}^3h_{ij}^{2}}} i=13j=13hij2 1 可以得到约束:
      • h 11 ′ 2 + h 12 ′ 2 + h 13 ′ 2 + h 21 ′ 2 + h 22 ′ 2 + h 23 ′ 2 + h 31 ′ 2 + h 32 ′ 2 + h 33 ′ 2 = 1 h_{11}'^{2} + h_{12}'^{2} + h_{13}'^{2} + h_{21}'^{2} + h_{22}'^{2} + h_{23}'^{2} + h_{31}'^{2} + h_{32}'^{2} + h_{33}'^{2}=1 h112+h122+h132+h212+h222+h232+h312+h322+h332=1
      • ∑ i = 1 3 ∑ j = 1 3 h i j ′ 2 = 1 \sum_{i=1}^3\sum_{j=1}^3h_{ij}'^{2}=1 i=13j=13hij2=1
    • 由此我们可以得出单应性矩阵有8个自由度,并非9个自由度。

3.3 求解

  • 由3.1中假设公式(1)可得:
    • { u = h 11 x + h 12 y + h 13 h 31 x + h 32 y + h 33 v = h 21 x + h 22 y + h 23 h 31 x + h 32 y + h 33 \left\{\begin{array}{ll} u=\frac{h_{11}x + h_{12}y + h_{13}}{h_{31}x + h_{32}y + h_{33}} \\ v=\frac{h_{21}x + h_{22}y + h_{23}}{h_{31}x + h_{32}y + h_{33}}\end{array} \right. {u=h31x+h32y+h33h11x+h12y+h13v=h31x+h32y+h33h21x+h22y+h23,进一步变换得:
    • { u ( h 31 x + h 32 y + h 33 ) = h 11 x + h 12 y + h 13 v ( h 31 x + h 32 y + h 33 ) = h 21 x + h 22 y + h 23 \left\{\begin{array}{ll} u(h_{31}x + h_{32}y + h_{33})=h_{11}x + h_{12}y + h_{13} \\ v(h_{31}x + h_{32}y + h_{33})=h_{21}x + h_{22}y + h_{23}\end{array} \right. {u(h31x+h32y+h33)=h11x+h12y+h13v(h31x+h32y+h33)=h21x+h22y+h23,进一步得到:
    • { x h 11 + y h 12 + h 13 − u x h 31 − u y h 32 − u h 33 = 0 x h 21 + y h 22 + h 23 − v x h 31 − v y h 32 − v h 33 = 0 \left\{\begin{array}{ll} xh_{11} + yh_{12} + h_{13} - uxh_{31} - uyh_{32} - uh_{33}=0\\ xh_{21} + yh_{22} + h_{23} - vxh_{31} - vyh_{32} - vh_{33}=0\end{array} \right. {xh11+yh12+h13uxh31uyh32uh33=0xh21+yh22+h23vxh31vyh32vh33=0,化成矩阵形式有:
    • [ x y 1 0 0 0 − u x − u y − u 0 0 0 x y 1 − v x − v y − v . . . . . . . . . . . . . . . . . . . . . ] [ h 11 h 12 h 113 h 21 h 22 h 23 h 31 h 32 h 33 ] = 0 \begin{bmatrix} x & y& 1& 0&0&0& - ux& -uy& -u \\ 0&0&0&x & y& 1& - vx& -vy& -v \\ ...\\...\\...\\...\\...\\...\\... \end{bmatrix}\begin{bmatrix} h_{11} \\ h_{12} \\ h_{113}\\h_{21}\\h_{22}\\h_{23}\\h_{31}\\h_{32}\\h_{33} \end{bmatrix}=0 x0.....................y0100x0y01uxvxuyvyuvh11h12h113h21h22h23h31h32h33=0,更进一步抽象:
    • [ P x y T 0 ⃗ T − u P x y T 0 ⃗ T P x y T − v P x y T ] h = 0 \begin{bmatrix} P_{xy}^{T} & \vec{0}^{T} & - uP_{xy}^{T} \\ \vec{0}^{T} &P_{xy}^{T} &- vP_{xy}^{T} \end{bmatrix}h=0 [PxyT0 T0 TPxyTuPxyTvPxyT]h=0
      • 其中 h = [ h 11 h 12 h 113 h 21 h 22 h 23 h 31 h 32 h 33 ] T h=\begin{bmatrix} h_{11} & h_{12}& h_{113}&h_{21}&h_{22}&h_{23}&h_{31}&h_{32}&h_{33} \end{bmatrix}^{T} h=[h11h12h113h21h22h23h31h32h33]T
      • 0 ⃗ T = [ 0 0 0 ] \vec{0}^{T}=\begin{bmatrix} 0&0&0 \end{bmatrix} 0 T=[000]
    • 我们发现一对点可以提供两个方程
    • 由于单应矩阵H包含了 ∣ ∣ H ∣ ∣ F = ∑ i = 1 3 ∑ j = 1 3 h i j ′ 2 = 1 ||H||_{F}=\sum_{i=1}^3\sum_{j=1}^3h_{ij}'^{2}=1 HF=i=13j=13hij2=1或者 h 33 = 1 h_{33}=1 h33=1约束,因此根据上式的线性方程组8自由度的H我们至少需要4对点才能计算出单应矩阵。

4. 优化

但是,以上只是理论推导,在真实的应用场景中,我们计算的点对中都会包含噪声。比如点的位置偏差几个像素,甚至出现特征点对误匹配的现象,如果只使用4个点对来计算单应矩阵,那会出现很大的误差。因此,为了使得计算更精确,一般都会使用远大于4个点对来计算单应矩阵。另外上述方程组采用直接线性解法通常很难得到最优解,所以实际使用中一般会用其他优化方法如奇异值分解、Levenberg-Marquarat(LM)算法等进行求解,具体的优化过程可以参考张正友相机标定中得优化方法

5. 推荐阅读

(超详细)张氏标定法原理及公式推导

  • 10
    点赞
  • 49
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值