旋转向量和平移向量的本质

旋转向量和平移向量的本质

1. 平移向量的本质

truthOfTranslationVector

如图所示,坐标系1和坐标系2平行但不重合,所以空间点从坐标系2到坐标系1的变换只有平移,空间的一点 P P P在坐标系2和坐标系1的坐标分别设为 P 2 P_{2} P2 P 1 P_{1} P1,设平移向量为 t ⃗ \vec{t} t ,即,空间点从坐标系2到坐标系1的变换可以表示为: P 1 = P 2 + t ⃗ P_{1}=P_{2}+\vec{t} P1=P2+t

  • 本质空间点从坐标系2变换到坐标系1的平移向量 t ⃗ \vec{t} t O 1 O 2 ⃗ \vec{O_{1}O_{2}} O1O2 ,在坐标系1中该向量的值与 O 2 O_{2} O2在坐标系1中的坐标相等。

2. 旋转矩阵的本质

在这里插入图片描述

如图所示,坐标系1和坐标系2原点重合但是不平行,所以空间点从坐标系2到坐标系1的变换只有旋转矩阵。空间的一点 P P P在坐标系2和坐标系1的坐标分别设为 P 2 P_{2} P2 P 1 P_{1} P1,旋转矩阵用 R R R表示则:

P 1 = R P 2 P_{1}=RP_{2} P1=RP2

R = [ r 11 r 12 r 13 r 21 r 22 r 23 r 31 r 32 r 33 ] = [ r 1 r 2 r 3 ] R=\begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}=\begin{bmatrix} r_{1} & r_{2} & r_{3} \end{bmatrix} R=r11r21r31r12r22r32r13r23r33=[r1r2r3]

在坐标系2中取三个特殊点 A ( 1 , 0 , 0 ) , B ( 0 , 1 , 0 ) , C ( 0 , 0 , 1 ) A(1,0,0),B(0,1,0),C(0,0,1) A(1,0,0)B(0,1,0)C(0,0,1),并分别将其转换到坐标系1中,则

{ P A 1 = R P A = r 1 P B 1 = R P B = r 2 P C 1 = R P C = r 3 \left\{\begin{array}{ll} P_{A1}= RP_{A} =r_{1} \\ P_{B1}= RP_{B} =r_{2} \\ P_{C1}= RP_{C} =r_{3}\end{array} \right. PA1=RPA=r1PB1=RPB=r2PC1=RPC=r3

空间点从坐标系2到坐标系1的旋转矩阵R的分量 r 1 , r 2 , r 3 r_{1},r_{2} ,r_{3} r1,r2,r3分别为坐标系2的基底向量 O 2 X 2 ⃗ 、 O 2 Y 2 ⃗ 、 O 2 Z 2 ⃗ \vec{O_{2}X_{2}}、\vec{O_{2}Y_{2}}、\vec{O_{2}Z_{2}} O2X2 O2Y2 O2Z2 在坐标系 O 1 O_{1} O1中的表示。

同理: [ r 11 r 12 r 13 ] T 、 [ r 21 r 22 r 23 ] T 、 [ r 31 r 32 r 33 ] T \begin{bmatrix} r_{11} & r_{12} & r_{13} \end{bmatrix}^{T}、\begin{bmatrix} r_{21} & r_{22} & r_{23} \end{bmatrix}^{T}、\begin{bmatrix} r_{31} & r_{32} & r_{33} \end{bmatrix}^{T} [r11r12r13]T[r21r22r23]T[r31r32r33]T分别为坐标系1的基底向量 O 1 X 1 ⃗ 、 O 1 Y 1 ⃗ 、 O 1 Z 1 ⃗ \vec{O_{1}X_{1}}、\vec{O_{1}Y_{1}}、\vec{O_{1}Z_{1}} O1X1 O1Y1 O1Z1 在坐标系 O 2 O_{2} O2中的表示。

  • 空间点从坐标系2到坐标系1的旋转矩阵R的本质
    • 列分量本质上是坐标系2的X轴、Y轴和Z轴在坐标系1中的坐标
    • R的行分量本质上是坐标系1的X轴、Y轴和Z轴在坐标系2中的坐标。

3. 两个坐标系之间的旋转矩阵和平移向量的相互转换关系

3.1 假设

cvtRT

  • 空间的一点 P P P在坐标系2和坐标系1的坐标分别设为 P 2 P_{2} P2 P 1 P_{1} P1
  • 坐标系1到坐标系2的旋转矩阵和平移向量设为: R 1 − > 2 R_{1->2} R1>2 t 1 − > 2 t_{1->2} t1>2
  • 坐标系2到坐标系1的旋转矩阵和平移向量设为: R 2 − > 1 R_{2->1} R2>1 t 2 − > 1 t_{2->1} t2>1

3.2 转换关系推导

  • P 2 − > P 1 P_{2}->P_{1} P2>P1

    • P 1 = R 2 − > 1 P 2 + t 2 − > 1 P_{1} = R_{2->1}P_{2}+t_{2->1} P1=R2>1P2+t2>1,变换得:
    • P 2 = R 2 − > 1 − 1 P 1 − R 2 − > 1 − 1 t 1 − > 2 P_{2} = R_{2->1}^{-1}P_{1}-R_{2->1}^{-1}t_{1->2} P2=R2>11P1R2>11t1>2
  • P 1 − > P 2 P_{1}->P_{2} P1>P2

    • P 2 = R 1 − > 2 P 1 + t 1 − > 2 P_{2} = R_{1->2}P_{1}+t_{1->2} P2=R1>2P1+t1>2
  • 综上可得:

    • { R 1 − > 2 = R 2 − > 1 − 1 = R 2 − > 1 T t 1 − > 2 = − R 2 − > 1 − 1 t 1 − > 2 \left\{\begin{array}{ll} R_{1->2}= R_{2->1}^{-1}= R_{2->1}^{T}\\ t_{1->2}=-R_{2->1}^{-1}t_{1->2} \end{array} \right. {R1>2=R2>11=R2>1Tt1>2=R2>11t1>2
    • 因为标准旋转矩阵R为单位正交阵
    • 因此旋转矩阵互逆,平移矩阵大小不变方向相反
  • 6
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值