量子计算


在发现光电效应之前,人们一致认为光是一种波,后来爱因斯坦将光描述为一颗颗微小的能量物质,取名量子,即不同的小物质携带着能量;

量子相干与量子纠缠

量子态

首先应当认识量子态,态指的是状态,量子态用来在量子力学中描述系统状态的向量,常使用狄拉克记号 ⟨ ϕ ⟩ \left\langle\phi\right\rangle ϕ表示;

在经典力学中,人们描述一个质点的状态(经典态)会使用:位置 ( x ) (x) (x),动量 ( p ) (p) (p)等;经典力学中,物质的状态是准确存在的;量子力学的不同之处在于,物质的状态本质上是不确定的,即状态不能使用一个确定值描述,应当使用概率分布描述;

比如质点的量子态(连续型):

  • 位置空间上的复值函数: ⟨ ϕ ⟩ = ϕ ( x ) : R 3 → C \left\langle\phi\right\rangle=\phi(x):\mathbb{R}^{3}\rightarrow\mathbb{C} ϕ=ϕ(x):R3C
  • 这个质点在空间中位置分布的概率密度函数是 ρ ( x ) = ∣ ϕ ( x ) ∣ 2 \rho(x)=|\phi(x)|^{2} ρ(x)=ϕ(x)2

R \mathbb{R} R代表实数空间, C \mathbb{C} C代表复数空间;


量子计算在目前设计下以量子的离散型状态为主,比如粒子自旋(离散型),粒子只能向上或向下:

  • 取值集合上的复值系数: ⟨ ϕ ⟩ = a ⟨ u p ⟩ + b ⟨ d o w n ⟩ \left\langle\phi\right\rangle=a\left\langle up\right\rangle+b\left\langle down\right\rangle ϕ=aup+bdown
  • 这个粒子自旋向上的概率为 ∣ a ∣ 2 |a|^{2} a2,自旋向下的概率为 ∣ b ∣ 2 |b|^{2} b2

过往故事:关于量子力学,爱因斯坦与波尔的思想争论不休,美国工程师为了反对爱因斯坦曾说过:“shut up and caculate”,其实,对于不深入研究量子力学的学者来说,我们确实不必深究其原因,我们只需按照规则计算就好;


量子相干性:双缝干涉实验

光电效应发现原本属于波的事物(光)会具有粒子属性,双缝干涉实验则让人看到原本属于粒子的事物(电子)有了波的属性;

提到量子力学,几乎都会从双缝干涉实验说起,因为双缝干涉实验能直观体现量子的相干性;相干性指的是同一个对象自身的关系;

最初的实验,使用枪发射弹珠,一次发射一颗:
fig1
理所应当地可以得到:两个缝的弹珠击打频率是单独缝的击打频率的叠加;假设单缝的击打频率分别为 ρ 1 ( x ) \rho_{1}(x) ρ1(x) ρ 2 ( x ) \rho_{2}(x) ρ2(x),则双缝的结果为: ρ 12 ( x ) = ρ 1 ( x ) + ρ 2 ( x ) \rho_{12}(x)=\rho_{1}(x)+\rho_{2}(x) ρ12(x)=ρ1(x)+ρ2(x)

但是,当不再使用弹珠,而是改为发射电子的实验:
fig2
此时,单缝的情况符合预期,但打开双缝得到的结果却不同于发射弹珠的实验,在100年前,这对物理学家产生了一定的冲击,但现在站在量子力学的角度就可以解释:每个粒子发射出去应当用一个函数(波函数)来描述,而不是一个数,干涉条纹计算如下:

  • 分别计算两条单缝的波函数;
  • 叠加得到双缝波函数,两个波函数进行干涉;
  • 最终的概率应来自波函数的模长;

假设单缝波函数分别为 ρ 1 ( x ) \rho_{1}(x) ρ1(x) ρ 2 ( x ) \rho_{2}(x) ρ2(x),此时有: ρ 1 ( x ) = ∣ ϕ 1 ( x ) ∣ 2 \rho_{1}(x)=|\phi_{1}(x)|^{2} ρ1(x)=ϕ1(x)2 ρ 2 ( x ) = ∣ ϕ 2 ( x ) ∣ 2 \rho_{2}(x)=|\phi_{2}(x)|^{2} ρ2(x)=ϕ2(x)2,则双缝的结果为: ρ 12 ( x ) = ∣ ϕ 1 ( x ) + ϕ 2 ( x ) ∣ 2 \rho_{12}(x)=|\phi_{1}(x)+\phi_{2}(x)|^{2} ρ12(x)=ϕ1(x)+ϕ2(x)2,基于量子态的复值函数表达(复数具有幅度和相位,相位影响着结果相消和相长),即有:
ρ 12 ( x ) = ∣ ρ 1 ( x ) e i A 1 ( t ) + ρ 2 ( x ) e i A 2 ( t ) ∣ 2 \rho_{12}(x)=|\sqrt{\rho_{1}(x)}e^{iA_{1}(t)}+\sqrt{\rho_{2}(x)}e^{iA_{2}(t)}|^{2} ρ12(x)=ρ1(x) eiA1(t)+ρ2(x) eiA2(t)2
与相干性相反的实验叫量子退相干,这个实验引入了观测者:
fig3
基于发射电子的双缝实验,在背后放置一个光源(因此量子退相干实验又被称为引入噪音或观测者),该光源的作用在于帮助我们判断电子是从哪条缝穿过:

  • 当电子从缝隙2穿过,光源会导致电子在下方闪烁;
  • 当电子从缝隙1穿过,光源会导致电子在上方闪烁;

此时奇怪的事情发生了,在不加光源情况下的双缝干涉条纹消失了,结果表现出:此时发射电子的双缝干涉实验变成了发射弹珠的双缝实验,即量子力学退化到经典力学;

通过退相干实验可以发现,量子相干性很容易被破坏(微弱的噪音就会形成观测者),这是量子计算需要解决的问题,因为量子计算依赖于量子相干性;

量子纠缠

量子纠缠是量子通信的重要概念,相干性只关于一个粒子,量子纠缠则关系到两个粒子;事实上,量子纠缠很普遍,发生于粒子相互作用或者粒子成对诞生的时候,但注意,标准可控制的纠缠态很难创建与维持;

回忆前面提到的量子退相干实验:电子从缝1穿过,上方闪烁,电子从缝2穿过,下方闪烁,这已经把通过哪条缝与哪个地方闪烁纠缠起来;也正是这个纠缠现象破坏了原先单个系统的相干性;

假设一个粒子的自旋只能向上或向下,现在考虑双粒子 A A A B B B,我们可以制备一个量子纠缠系统,使得 A A A B B B要么同时向上自旋,要么同时向下自旋,可以想象双粒子系统处于这两个结果都存在的状态下,即:{ A , B A,B A,B}这个双粒子系统处于两种状态的叠加态;


奇异现象
对于这个纠缠系统,当我们观测到A向上(向下)自旋时,观测B也体现为向上(向下)自旋;这被称为量子世界里的鬼魅联系;

按照尼尔斯波尔的观点,两个互相纠缠的粒子不能从一开始就设定好结果(爱因斯坦的手套实验认为粒子一开始就已经设定好结果),只有当我们对其进行观测,它们才存在,而每次所观测到的诡异结果是鬼魅联系的作用;换句话说,如果我们不抬头看月亮,那么月亮就不存在,确实很违背常识,但在量子的世界里,就是这样的规则;


注意关于量子纠缠,存在几个常见的不准确理解:

  • 1.纠缠态下的两个粒子,如果对其中一个进行操作,另一个也会发生相应变化;
    答:对其中一个进行操作并不会对另外一个粒子产生影响,而且操作可能会破坏纠缠态,所以这是错误的说法;
  • 2.通过量子纠缠可以实现超光速通讯;
    答:超光速通讯违反相对论基本假设,在当前物理学框架下,不可能实现;

量子操作与算法

量子操作

不管是什么计算模式,总可以概括为从输入到输出的pipeline,量子计算的架构通常如下:
fig4

初始化用于制备量子态(一个向量),量子门是一种特殊的线性映射,如何设计量子门的方法被称为量子算法;

量子操作:

  • 量子门用于对量子态进行酉变换,假设粒子系统一共存在 n n n个状态:
    T : C n → C n , T ( v ) ∗ ⋅ T ( v ) = v ∗ ⋅ v = I T:\mathbb{C}^{n}\rightarrow\mathbb{C}^{n},T(v)^{*}\cdot T(v)=v^{*}\cdot v=I T:CnCn,T(v)T(v)=vv=I
    其中, T ( v ) ∗ T(v)^{*} T(v) T ( v ) T(v) T(v)的共轭转置;如果有 q q q个粒子,每个粒子有两个状态,则 n = 2 q n=2^{q} n=2q;所以,仅用少量粒子就能表示很大的状态空间;
    举个例子,假设有一个粒子,一个变换 H H H,第三步即把变换 H H H作用于粒子叠加态 ⟨ + ⟩ \left\langle +\right\rangle +上,由于粒子的相干性,可以将变换 H H H分别作用到叠加态的分量上,因此得到 1 2 ( ⟨ + ⟩ + ⟨ − ⟩ ) \frac{1}{\sqrt{2}}(\left\langle +\right\rangle+\left\langle -\right\rangle) 2 1(++),由于叠加态没有被破坏,量子依然具有相干性所以可得到量子态 ⟨ 0 ⟩ \left\langle 0\right\rangle 0 ⟨ − ⟩ \left\langle -\right\rangle 也是一样的道理:
    fig5
  • 对单个量子比特的测量:假设一个量子态,经过各种变换得到一个叠加态,通过测量的方式得到最终该量子比特是0还是1;

量子算法-黑箱问题

如果有一个黑箱函数: f : { 0 , 1 } → { 0 , 1 } f:\left\{0,1\right\}\rightarrow\left\{0,1\right\} f:{0,1}{0,1},这个函数有两个可能:

  • 一种是常值函数: f ( x ) = 0 f(x)=0 f(x)=0 f ( x ) = 1 f(x)=1 f(x)=1
  • 一种是均衡函数: f ( x ) = 1 − x f(x)=1-x f(x)=1x f ( x ) = x f(x)=x f(x)=x

试问,如何在尽量少调用 f ( x ) f(x) f(x)的情况下,判断函数是常值函数还是均衡函数;

首先用量子黑箱取代经典黑箱:
ϕ ( ⟨ x ⟩ ) = ( − 1 ) f ( x ) ⟨ x ⟩ \phi(\left\langle x\right\rangle)=(-1)^{f(x)}\left\langle x\right\rangle ϕ(x)=(1)f(x)x
使用 H ( ⟨ 0 ⟩ ) = ⟨ + ⟩ = 1 2 ( ⟨ 0 ⟩ + ⟨ 1 ⟩ ) H(\left\langle 0\right\rangle)=\left\langle +\right\rangle=\frac{1}{\sqrt{2}}(\left\langle 0\right\rangle+\left\langle 1\right\rangle) H(0)=+=2 1(0+1) H ( ⟨ 1 ⟩ ) = ⟨ − ⟩ = 1 2 ( ⟨ 0 ⟩ − ⟨ 1 ⟩ ) H(\left\langle 1\right\rangle)=\left\langle -\right\rangle=\frac{1}{\sqrt{2}}(\left\langle 0\right\rangle-\left\langle 1\right\rangle) H(1)==2 1(01),现在让量子处于叠加态,并调用一次量子黑箱,基于相干性得到:
ϕ ( ⟨ + ⟩ ) = 1 2 ( ϕ ( ⟨ 0 ⟩ ) + ϕ ( ⟨ 1 ⟩ ) ) = 1 2 ( ( − 1 ) f ( 0 ) ⟨ 0 ⟩ + ( − 1 ) f ( 1 ) ⟨ 1 ⟩ ) \phi(\left\langle +\right\rangle)=\frac{1}{\sqrt{2}}(\phi(\left\langle 0\right\rangle)+\phi(\left\langle 1\right\rangle))=\frac{1}{\sqrt{2}}((-1)^{f(0)}\left\langle 0\right\rangle+(-1)^{f(1)}\left\langle 1\right\rangle) ϕ(+)=2 1(ϕ(0)+ϕ(1))=2 1((1)f(0)0+(1)f(1)1)
如果 f f f是常数函数,则有:
ϕ ( ⟨ + ⟩ ) = λ 1 ⟨ + ⟩ → H ( λ 1 ⟨ + ⟩ ) = λ 1 ⟨ 0 ⟩ \phi(\left\langle +\right\rangle)=\lambda_{1} \left\langle +\right\rangle\rightarrow H(\lambda_{1} \left\langle +\right\rangle)=\lambda_{1} \left\langle 0\right\rangle ϕ(+)=λ1+H(λ1+)=λ10
如果 f f f是均衡函数,则有:
ϕ ( ⟨ + ⟩ ) = λ 2 ⟨ − ⟩ → H ( λ 2 ⟨ − ⟩ ) = λ 2 ⟨ 1 ⟩ \phi(\left\langle +\right\rangle)=\lambda_{2} \left\langle -\right\rangle\rightarrow H(\lambda_{2} \left\langle -\right\rangle)=\lambda_{2} \left\langle 1\right\rangle ϕ(+)=λ2H(λ2)=λ21
此时,对量子比特进行测量,结果为0代表是常数函数,结果为1代表均衡函数;

由于 λ 1 \lambda_{1} λ1 λ 2 \lambda_{2} λ2取值必然是-1或者1,所以计算概率有:
∣ λ 1 ⟨ 0 ⟩ ∣ 2 = 0 , ∣ λ 2 ⟨ 1 ⟩ ∣ 2 = 1 |\lambda_{1} \left\langle 0\right\rangle|^{2}=0,|\lambda_{2} \left\langle 1\right\rangle|^{2}=1 λ102=0,λ212=1
即只要使用一个量子,调用一次量子黑箱就能得到判断结果;

可以看出,量子计算强烈依赖量子的叠加态和相干性,但是噪音无处不在,极容易导致退相干,所以量子计算的实现是非常困难的。但这些不能阻碍人类探索量子计算的梦想,比如微软的拓扑量子计算机,谷歌和IBM的超导量子计算机等都是量子计算发展的缩影。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值