mAP与IOU的简单介绍

mAP

        在评价一个检测算法的时候,主要看两个标准,即是否正确预测了框内的物体类别;预测的框和人工标注框的重合程度。这两个的量化指标分别是mAP(mean Average Precision)和IOU(Intersection Over Union)。

        mAP中文翻译过来叫做平均精度均值,其中AP为平均精度(Average Precision),mAP是把每个类别的AP都单独拿出来,然后计算所有类别AP的平均值,代表着对检测到的目标平均精度的一个综合评价。

                                平均精度均值=所有类别的平均精度值之和/所有类别的数目

当我们比较 mAP 值的时候要记得几个重要的点:

  1. mAP 总是在固定的数据集上进行计算。
  2. mAP 并不是量化模型输出的绝对度量,但它是一个不错的相对度量。当我们在流行的公开数据集上计算这个度量时,它可以很容易地被用来比较目标检测的新老方法的性能好坏,因此我们并不需要一个绝对度量。
  3. 根据不同的类别在训练数据中的分布情况不同,平均精度值可能对于某些类别(这些类别有很好的训练数据)非常高,然后对于某些类别(这些类别有更少的数据或者坏数据)可能非常低。所以,你的 mAP 值可能看上去还不错,但是你的模型可能只对某些类别较好,而对某些类别的效果非常差。因此,当分析你的模型结果时,最好单独类别的平均精度值。这些值过低的话可能意味着需要添加更多的训练样本了。

IoU

        交并比是预测边界框和参考边界框的交集和并集之间的比率。这个统计量也叫做 Jaccard 指数(Jaccard Index),是由 Paul Jaccard 在 20 世纪初首次提出的,IOU用来衡量预测的物体框和真实框的重合程度,计算方法如下:

        重合度的计算方法, 用两个框的重合面积除以两个框并集所占面积,所以叫做交并比,评价一个算法的时候,一种常见的方法是先设定一个IOU阈值,最常用的阈值是0.5:如果 IoU > 0.5,那么认为这是一个正确检测,否则认为这是一个错误检测。只要算法找到的框的IOU大于这个阈值,就是一个有效的检测,把结果拿来计算mAP作为最终的评价指标。

 

 

 

 

 

参考:

https://www.sohu.com/a/232474201_633698

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值