使用Python和OpenCV检测图像中的条形码

本文详细介绍了如何利用计算机视觉库OpenCV和Python编程语言,通过一系列图像处理步骤来检测图像中的条形码。包括计算梯度、模糊处理、阈值化、形态学操作等,最终找到并展示条形码的轮廓。虽然该算法适用于水平条形码,但对于更复杂的场景,可以考虑引入机器学习技术进行增强。
摘要由CSDN通过智能技术生成

使用Python和OpenCV检测图像中的条形码

这篇博客将介绍使用计算机视觉和图像处理技术进行条形码检测的必要步骤,并演示使用Python编程语言和OpenCV库实现检测算法及其检测效果。

1. 效果图

原图
在这里插入图片描述
灰度图 VS 梯度渐变图
x梯度减y梯度,梯度渐变获取定位条形码大致区域;
在这里插入图片描述高斯模糊图 VS 阈值化图
高斯模糊去掉高频噪音的干扰;
阈值化图使得图像的黑白区域更加明显。阈值的值的设置很重要。该方法应用的是大于225的直接为255白色,不大于255的为0,黑色
在这里插入图片描述闭合核图 VS 腐蚀膨胀图
闭合核作用:使得条形码之间的细线差距更小;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序媛一枚~

您的鼓励是我创作的最大动力。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值