使用Python和OpenCV检测图像中的多个亮点

本文介绍如何使用Python和OpenCV检测图像中的多个亮点,通过阈值化和图像处理技术,有效地从较暗区域中分离并标记亮点。效果显著,源码参考链接提供。
摘要由CSDN通过智能技术生成

使用Python和OpenCV检测图像中的多个亮点)

今天是2021春节的最后一个工作日,同事已陆续离开,鉴于我回家没什么事,so 学习一篇博客再回家。

这篇博客是上一篇 使用Python,OpenCV查找图像中的最亮点 的进阶,将介绍如何使用Python和OpenCV检测图像中的多个亮的区域。

主要通过应用阈值化显示图像中最亮的区域来完成。

关键是阈值化步骤——如果阈值化后的图像非常嘈杂,无法使用轮廓属性或连接组件分析进行过滤,那么将无法定位图像中的每个明亮区域。

因此,应该首先通过应用各种阈值技术(如简单阈值,大津阈值,自适应阈值,甚至是GrabCut)来评估输入图像,并可视化结果。只要可以合理地从图像的较暗,不相关的区域中分割出较亮的区域,那么这个方法将非常有用;

1. 效果图

原始图 VS 效果图:
可以看到图左原始图中有多个亮的灯泡,在图右效果图中每个亮的区域都被成功标记。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序媛一枚~

您的鼓励是我创作的最大动力。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值