记录开(被)心(迫)修改MaskRCNN码至单目标分割

环境配置与运行

魔改的良好开端是先把别人的代码运行起来
首先从github上下载Mask-RCNN的tensorflow版代码
开辟一个新的python环境
安装tensorflow-gpu,按照requirements.txt文件中给出的要求,应该下载tensorflow>=1.3.0,为了在服务器上良好运行,测试得出GPU1.15.0版也可以良好适配(更高级的版本应该都可)
最终环境为:
python 3.6.13
tensorflow-gpu 1.15.0
keras 2.0.8
CUDA 10.0
其余均为默认

官方教程给出的是demo文件是/samples/demo.ipynb文件,为了更好的适用性,我通过如下命令将其转换为了.py文件。这里需要注意一下,代码中有一句get_ipython().run_line_magic(),.py文件需要将这句注释掉

jupyter noconvert --to script demo.ipynb

下载官方模型,mask_rcnn_coco.h5,可以去官网,科学上网后下载很快。或者找用户的百度网盘链接,有会员的也很快。

下一步需要安装pycocotools
这里也很容易出现各种问题,解决方法是从官网直接下载安装包,传到服务器端PythonAPI文件夹下,解压后按要求安装

到这里就可以成功运行demo.py文件了,成功卖出第一步

导入新数据

首先,作为对比试验测试我们算法的效果,需要导入无标签图片集。批量获取多文件夹下的图片示例代码如下:

import os

path ='F:\\test\\frames'
 
def get_filelist(dir):
    Filelist = []
    for home, dirs, files in os.walk(path
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值