You are assigned to design network connections between certain points in a wide area. You are given a set of points in the area, and a set of possible routes for the cables that may connect pairs of points. For each possible route between two points, you are given the length of the cable that is needed to connect the points over that route. Note that there may exist many possible routes between two given points. It is assumed that the given possible routes connect (directly or indirectly) each two points in the area.
Your task is to design the network for the area, so that there is a connection (direct or indirect) between every two points (i.e., all the points are interconnected, but not necessarily by a direct cable), and that the total length of the used cable is minimal.
The maximal number of points is 50. The maximal length of a given route is 100. The number of possible routes is unlimited. The nodes are identified with integers between 1 and P (inclusive). The routes between two points i and j may be given as i j or as j i.
1 0 2 3 1 2 37 2 1 17 1 2 68 3 7 1 2 19 2 3 11 3 1 7 1 3 5 2 3 89 3 1 91 1 2 32 5 7 1 2 5 2 3 7 2 4 8 4 5 11 3 5 10 1 5 6 4 2 12 0
0 17 16 26
题意:连通各点最短距离,最小生成树。
kruskal(克鲁斯卡尔算法) 加边法
其本质是并查集
#include<algorithm>
using namespace std;
int n,m;
int pre[100005];
struct node
{
int u,v,w;
} edge[100005];
int cmp(node a,node b)
{
return a.w<b.w;
}
int find(int x)
{
if(x==pre[x])
return x;
return pre[x]=(find(pre[x]));
}
int main()
{
int p,r;
{
if(p==0)
break;
scanf("%d",&r);
for(int i=1;i<=p;i++)
{
pre[i]=i;
}
for(int i=1;i<=r;i++)
{
scanf("%d%d%d",&edge[i].u,&edge[i].v,&edge[i].w);
}
sort(edge+1,edge+r+1,cmp);
int ans=0;
int num=0;
for(int i=1;i<=r;i++)
{
int fx=find(edge[i].u);
int fy=find(edge[i].v);
if(fx!=fy)
{
pre[fx]=fy;
ans+=edge[i].w;
num++;
}
if(num==p-1)
break;
}
printf("%d\n",ans);
}
return 0;
}
#include<string.h>
#define inf 0x3f3f3f3f
int p,r;
int pre[1001][1001];
int vis[1001],dis[1001];
void prim()
{
int i,j,k;
int idex=0;
int ans=0;
memset(vis,0,sizeof(vis));
vis[1]=1;//标记数组 若是此点走过就标记为一 此时是将1点作为路的开头
for(i=2; i<=p; i++)
dis[i]=pre[1][i];//将从1到各个点的距离全部储存在dis数组中//若是两个点中没有路那么dis中储存的就是最大值inf
for(i=2; i<=p; i++)//遍历每个点 因为最小生成树就是要把所有的点全部遍历
{
int min=inf;
idex=0;
for(j=1; j<=p; j++)//遍历每一个点 找到一个离1最近的点
{
if(!vis[j] && dis[j]<min)//而且这个点必须没有被标记过
{
min=dis[j];//维护最小值
idex=j;
}
}
ans+=min;//将每一步的最小值都加在ans
//printf("%d\n",ans);
vis[idex]=1;//将走的点标记
for(k=1; k<=p; k++)
if(!vis[k] && dis[k]>pre[idex][k])//更新dis数组//其原则是从目前所在的点出发和之前存在dis中的值作比较将较小的值存起来
dis[k]=pre[idex][k];
}
printf("%d\n",ans);
}
{
int u,v,w;
while(scanf("%d",&p,&r)!=EOF)
{
if(p==0)
break;
scanf("%d",&r);
memset(pre,inf,sizeof(pre));//将pre数组初始化为最大值对以后计算有帮助
for(int i=1; i<=r; i++)
{
scanf("%d%d%d",&u,&v,&w);
if(pre[u][v]>w)
{
pre[u][v]=w;//将两点之间的距离正相反相全部存起来
pre[v][u]=w;
}
}
prim();//进入函数
}
}