3.2.3 Synchronization of several trapezoidal trajectories 多条梯形轨迹的同步

该内容涉及多驱动器同步路径规划的问题,强调了在所有驱动器具有相同最大速度和加速度约束的情况下,需依据位移最大的驱动器来确定总时间和加速阶段时间。通过公式计算各个驱动器的轨迹,确保最小化总时间。例如中提到了三个驱动器,其中一个具有最大位移,其加速和减速时间决定了其他驱动器的速度和加速度配置。负位移的驱动器则需要先减速再加速。最终,所有驱动器的轨迹得以协调,实现时间优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        如果多个驱动器必须协同,那么全部轨迹必须根据最慢的那个进行规划,或者最大位移那个。例如,假设一个动作所包含的多个驱动器以同样的约束条件进行规划(同样最大加速度和速度)。在这样情况下,需要对位移最大的驱动器在最大加速度amax 条件下计算加速阶段时间Ta和总时间T。一旦时间Ta,T确定好,其余的驱动器便可以根据各自的位移hi确定各自的加速度和速度。见3.2.6节

        然后公式(3.4)可以用于每条轨迹的计算 


        例子3.3:定义三个驱动器(具有相同的最大速度和加速度vmax = 20 amax = 20),这三个驱动器的位移必须定义,从而保证计算出总时间T最小,三个驱动器的加速阶段或者减速阶段的时间Ta/Td相同。位移定义如下:

 

     

         a号驱动器有最大位移(h_{a} = 50),因此总时间T和加速阶段/减速阶段的时间Ta/Td由此驱动器定义。因为h_{a} > v_{max}^{2}/a_{max},所以匀速段存在,然后根据v_{max},a_{max} 和公式(3.8)可以得到:

         然后,其余驱动器的最大/最小速度和加速度可以计算如下:

 
        注意:b号驱动器的位移为负,所以其加速和减速阶段时间互换(既先减速再加速)。此外因为对称,所以amin = −amax vmin = −vmax T, Ta 和最大加速度、最大速度可以用于计算三个驱动器的轨迹。结果见图3.4.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值