基于FFT频谱与小波时频图的双流CNN轴承故障诊断模型

6 篇文章 6 订阅
5 篇文章 4 订阅

         在博客https://blog.csdn.net/qq_41043389/article/details/106150980里,我们提出了采用小波时频图作为轴承信号的故障特征数据,即首先利用提取各样本的小波时频图,如图1所示,然后构建CNN(lenet)模型,最终达到了99.5%的分类正确率,详情可以看我上面那个说的那个博客。

                                                                

                                                                        图1 小波时频图

1、基于FFT频谱与小波时频图的双流CNN轴承故障诊断模型

           今天,我们提出一个更加牛逼的轴承故障cnn模型——双流CNN,其结构如图2所示。

                                                                           图  2       双流CNN结构

        大致原理如下:基于2D-CNN与1D-CNN,构建双通道的CNN(双流CNN),其中2D-CNN以小波时频图为输入,而1D-CNN以FFT频谱信号为输入,分别进行卷积层与池化层的特征提取之后,拉伸为特征向量,然后在汇聚层进行拼接,接着是全连接网路层与分类层。此种方法可以实现1维时域特征与2维时频域特征的有效融合,并以此来提高分类正确率。由于方法用MATLAB构建不了,因此这部分CNN采用pytorch实现。

2、数据准备

        采用西储大学轴承故障诊断数据集,48K/0HP数据,共10类故障(正常作为一类特殊的故障类型),划分后每个样本的采样点为864(据说是因为这样含两个故障周期),每类故障各200个样本,因此一共2000个样本,然后7:2:1划分训练集(1400),验证集(400),与测试集(200)。

3、模型训练

         在torch中训练搭建与训练上述模型,得到的训练集与验证集的loss曲线与正确率曲线如图3所示所示。

从正确率与loss曲线可以看出,网络在200次训练的时候基本就完全收敛了,保存此时的模型,用于测试集分类。.

4、模型结果

         

        加载测试集的小波时频数据与FFT频谱数据,得到正确率为100%。

        博客https://blog.csdn.net/qq_41043389/article/details/106150980中采用小波时频+CNN,正确率99.5%

        博客https://blog.csdn.net/qq_41043389/article/details/103870271中采用双流CNN,对原始数据进行分类,正确率为97%

5、对比

5.1 FFT+1DCNN正确率

5.2 时频图+CNN

 6、结论

       采用小波时频图与FFT频谱信号构建双流CNN故障诊断模型,能极大的提高故障诊断正确率,最终测试集的正确率达到100%.

评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值