2003~2010中国科学技术大学845自动控制理论证明题

本文详细讨论了线性系统的能控标准型、闭环系统控制与观测性、状态空间变换对特征值和传递函数的影响,以及能控性与能观性的判断方法。通过实例分析和矩阵运算,展示了如何通过状态变换保持或破坏系统的能控性和能观性。
摘要由CSDN通过智能技术生成

2003 七、

1.系统的能控标准型
x ˙ = [ 0 1 0 0 0 1 − 4 − 3 − 2 ] x + [ 0 0 1 ] u y = [ 1 3 2 ] x \begin{aligned} \dot{x} &= \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -4 & -3 & -2 \end{bmatrix}x + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}u \\ y & = \begin{bmatrix} 1 & 3 & 2 \end{bmatrix}x \end{aligned} x˙y=004103012x+001u=[132]x
2.闭环系统为
x ˙ = ( A + b k ) x + b v y = c x \begin{aligned} \dot{x}&=(A+bk)x+bv \\ y&=cx \end{aligned} x˙y=(A+bk)x+bv=cx
闭环系统一定能控,因为
a a a.能控标准型一定能控;
b b b.状态反馈不改变系统的能控性。
3.闭环系统不一定能观,因为可通过选择 k k k使闭环极点得以任意配置,而闭环零点位置不变,当闭环零极点相同时,对消,能控能观性之一被破坏,因闭环系统一定能控,只能是能观性被破坏。综上所述,符合要求的期望特征多项式为
f ( s ) = ( s 2 + 3 s + 2 ) ( s + 1 ) = s 3 + 4 s 2 + 5 s + 2 f(s)=(s^2+3s+2)(s+1)=s^3+4s^2+5s+2 f(s)=(s2+3s+2)(s+1)=s3+4s2+5s+2
k = [ k 1 k 2 k 3 ] k=\begin{bmatrix}k_1 & k_2 & k_3\end{bmatrix} k=[k1k2k3]时,闭环系统的特征多项式为
f ( s ) = det ⁡ ( λ I − A − b k ) = s 3 + ( k 2 + 2 ) s 2 + ( k 3 + 3 ) s + ( k 1 + 4 ) f(s)=\det(\lambda I-A-bk)=s^3+(k_2+2)s^2+(k_3+3)s+(k_1+4) f(s)=det(λIAbk)=s3+(k2+2)s2+(k3+3)s+(k1+4)
比较系数得
k = [ k 1 k 2 k 3 ] = [ − 2 2 2 ] k= \begin{bmatrix} k_1 & k_2 & k_3 \end{bmatrix}= \begin{bmatrix} -2 & 2 & 2 \end{bmatrix} k=[k1k2k3]=[222]
此时闭环系统的传递函数为
G 0 ( s ) = 1 s + 1 G_0(s)=\frac{1}{s+1} G0(s)=s+11

2004 七、

1.系统的能控矩阵
Q c = [ b A b A 2 b ⋯ A n − 1 b ] Q_c= \begin{bmatrix} b & Ab &A^2b & \cdots & A^{n-1}b \end{bmatrix} Qc=[bAbA2bAn1b]
系统的能观矩阵
Q o = [ c c A c A 2 ⋮ c A n − 1 ] Q_o= \begin{bmatrix} c \\ cA \\ cA^2 \\ \vdots \\ cA^{n-1} \end{bmatrix} Qo=ccAcA2cAn1

Q o Q c = [ c b c A b c A 2 b ⋯ c A n − 1 b c A b c A 2 b c A 3 b ⋯ c A n b c A 2 b c A 3 b c A 4 b ⋯ c A n + 1 b ⋮ ⋮ ⋮ ⋱ ⋮ c A n − 1 b c A n b c A n + 1 b ⋯ c A 2 ( n − 1 ) b ] Q_oQ_c= \begin{bmatrix} cb & cAb & cA^2b & \cdots & cA^{n-1}b \\ cAb & cA^2b & cA^3b & \cdots & cA^nb \\ cA^2b & cA^3b & cA^4b & \cdots & cA^{n+1}b \\ \vdots & \vdots & \vdots & \ddots & \vdots\\ cA^{n-1}b & cA^{n}b & cA^{n+1}b & \cdots & cA^{2(n-1)}b \end{bmatrix} QoQc=cbcAbcA2bcAn1bcAbcA2bcA3bcAnbcA2bcA3bcA4bcAn+1bcAn1bcAnbcAn+1bcA2(n1)b
法一:
c A i b = 0 ( i = 1 , 2 , ⋯   , n − 2 ) cA^ib=0(i=1,2,\cdots,n-2) cAib=0(i=1,2,,n2) c A n − 1 b ≠ 0 cA^{n-1}b\not=0 cAn1b=0时, ∣ Q o Q c ∣ = ∣ Q o ∣ ⋅ ∣ Q c ∣ ≠ 0 |Q_oQ_c|=|Q_o|\cdot|Q_c|\not=0 QoQc=QoQc=0,即 ∣ Q o ∣ ≠ 0 |Q_o|\not=0 Qo=0 ∣ Q c ∣ ≠ 0 |Q_c|\not=0 Qc=0,此时 Q c Q_c Qc Q o Q_o Qo均满秩,故系统既能控又能观。
法二:
Q o Q c = [ 0 0 0 ⋯ c A n − 1 b 0 0 0 ⋯ c A n b 0 0 c A n − 1 b ⋯ c A n + 1 b ⋮ ⋮ ⋮ ⋱ ⋮ c A n − 1 b c A n b c A n + 1 b ⋯ c A 2 ( n − 1 ) b ] Q_oQ_c= \begin{bmatrix} 0 & 0 & 0 & \cdots & cA^{n-1}b \\ 0 & 0 & 0 & \cdots & cA^nb \\ 0 & 0 & cA^{n-1}b & \cdots & cA^{n+1}b \\ \vdots & \vdots & \vdots & \ddots & \vdots\\ cA^{n-1}b & cA^{n}b & cA^{n+1}b & \cdots & cA^{2(n-1)}b \end{bmatrix} QoQc=000cAn1b000cAnb00cAn1bcAn+1bcAn1bcAnbcAn+1bcA2(n1)b
这个是下三角矩阵,反对角线上元素全非零,矩阵满秩。根据矩阵理论必有 Q c Q_c Qc Q o Q_o Qo必满秩。所以系统既能控又能观。
2.系统的传递函数为
G ( s ) = c ( s I − A ) − 1 b = N ( s ) D ( s ) G(s)=c(sI-A)^{-1}b=\frac{N(s)}{D(s)} G(s)=c(sIA)1b=D(s)N(s)
其分母的首一多项式为
D ( s ) = det ⁡ ( s I − A ) D(s)=\det(sI-A) D(s)=det(sIA)
构造单位输出正反馈
u = v + y u=v+y u=v+y
闭环系统的状态空间方程为
x ˙ = ( A + b c ) x + b v y = c x \begin{aligned} \dot{x}&=(A+bc)x+bv \\ y&=cx \end{aligned} x˙y=(A+bc)x+bv=cx
其传递函数为
G 0 ( s ) = c ( s I − A − b c ) − 1 b = N 0 ( s ) D 0 ( s ) G_0(s)=c(sI-A-bc)^{-1}b=\frac{N_0(s)}{D_0(s)} G0(s)=c(sIAbc)1b=D0(s)N0(s)
分母的首一多项式为
D 0 ( s ) = det ⁡ ( s I − A − b c ) D_0(s)=\det(sI-A-bc) D0(s)=det(sIAbc)
G ( s ) G(s) G(s) G 0 ( s ) G_0(s) G0(s)的关系为
G ( s ) = N ( s ) D ( s ) = G 0 ( s ) 1 + G 0 ( s ) = N 0 ( s ) D 0 ( s ) + N 0 ( s ) = D ( s ) − D 0 ( s ) D ( s ) G(s)=\frac{N(s)}{D(s)}=\frac{G_0(s)}{1+G_0(s)}=\frac{N_0(s)}{D_0(s)+N_0(s)}=\frac{D(s)-D_0(s)}{D(s)} G(s)=D(s)N(s)=1+G0(s)G0(s)=D0(s)+N0(s)N0(s)=D(s)D(s)D0(s)
代入上述结果得
G ( s ) = N ( s ) D ( s ) = det ⁡ ( s I − A ) − det ⁡ ( s I − A − b c ) det ⁡ ( s I − A ) G(s)=\frac{N(s)}{D(s)}=\frac{\det(sI-A)-\det(sI-A-bc)}{\det(sI-A)} G(s)=D(s)N(s)=det(sIA)det(sIA)det(sIAbc)

2005 七、

1.系统的线性变换为
x = P x ˉ x=P\bar{x} x=Pxˉ
线性变换后系统的特征多项式为
∣ λ I − A ˉ ∣ = ∣ λ I − P − 1 A P ∣ = ∣ P − 1 λ P − P − 1 A P ∣ = ∣ P − 1 ( λ I − A ) P ∣ = ∣ P − 1 ∣ ∣ λ I − A ∣ ∣ P ∣ = ∣ λ I − A ∣ \begin{aligned} |\lambda I-\bar{A}| & = |\lambda I-P^{-1}AP| \\ & = |P^{-1}\lambda P -P^{-1}AP| \\ & = |P^{-1}(\lambda I-A)P| \\ & = |P^{-1}||\lambda I-A||P| \\ & = |\lambda I-A| \end{aligned} λIAˉ=λIP1AP=P1λPP1AP=P1(λIA)P=P1λIAP=λIA
上式表明,系统的非奇异线性变换不改变系统的特征多项式和特征值,而系统渐近稳定性取决于系统的特征值,则非奇异线性变换不改变系统的渐近稳定性。
2. { A , b } \{A,b\} {A,b}能控,则一定能通过非奇异线性变换转换为能控标准型,设变换矩阵为 P P P,则
A ˉ = P − 1 A P = [ 0 1 0 0 ⋯ 0 0 0 1 0 ⋯ 0 0 0 0 1 ⋯ 0 ⋮ ⋮ ⋮ ⋮ ⋱ 1 − a n − a n − 1 − a a − 2 − a a − 3 ⋯ − a 1 ] b ˉ = P − 1 b = [ 0 0 0 ⋮ 1 ] \bar{A}=P^{-1}AP= \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & 1 \\ -a_n & -a_{n-1} & -a_{a-2} & -a_{a-3} & \cdots & -a_1 \end{bmatrix} \\ \bar{b} = P^{-1}b= \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} \\ Aˉ=P1AP=000an100an1010aa2001aa30001a1bˉ=P1b=0001
不妨取
c ˉ = c P = [ 1 0 0 0 ⋯ 0 ] \bar{c}=cP= \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 \end{bmatrix} cˉ=cP=[10000]
而此时能观性矩阵为
Q o = [ c c A c A 2 ⋮ c A n − 1 ] = [ 1 0 0 ⋯ 0 0 1 0 ⋯ 0 0 0 1 ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ 0 0 0 ⋯ 1 ] Q_o= \begin{bmatrix} c \\ cA \\ cA^2 \\ \vdots \\ cA^{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix} Qo=ccAcA2cAn1=1000010000100001
系统能观,非奇异线性变换不改变系统的能控性和能观性,则原系统一定存在行向量 c c c,使得 { A , c } \{A,c\} {A,c}能观。

2006 七、

1.系统的传递函数为
G ( s ) = b n − 1 s n − 1 + b n − 2 s n − 2 + ⋯ + b 1 s + b 0 s n + a n − 1 s n − 1 + a n − 2 s n − 2 + ⋯ + a 1 s + a 0 G(s)=\frac{b_{n-1}s^{n-1}+b_{n-2}s^{n-2}+\cdots+b_1s+b_0}{s^n+a_{n-1}s^{n-1}+a_{n-2}s^{n-2}+\cdots+a_1s+a_0} G(s)=sn+an1sn1+an2sn2++a1s+a0bn1sn1+bn2sn2++b1s+b0
因为系统能控,存在非奇异线性变换 x ˉ = P − 1 x \bar{x}=P^{-1}x xˉ=P1x,可将系统变换为能控标准型系统,即
A ˉ = P − 1 A P = [ 0 1 0 ⋯ 0 0 0 1 ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ 0 0 0 ⋯ 1 − a 0 − a 1 − a 2 ⋯ − a n − 1 ] , b ˉ = P − 1 b = [ 0 0 ⋮ 0 1 ] c ˉ = c P = [ b 0 b 1 b 2 ⋯ b n − 1 ] \begin{aligned} \bar{A}&=P^{-1}AP= \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_0 & -a_1 & -a_2 & \cdots & -a_{n-1} \end{bmatrix}, \quad \bar{b}=P^{-1}b= \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} \\ \bar{c}&=cP= \begin{bmatrix} b_0 & b_1 & b_2 & \cdots & b_{n-1} \end{bmatrix} \end{aligned} Aˉcˉ=P1AP=000a0100a1010a2001an1,bˉ=P1b=0001=cP=[b0b1b2bn1]
可知,传递函数的分子多项式的系数全部位于能控标准型系统的输出矩阵 c ˉ \bar{c} cˉ中。状态反馈 u = − K x = − K ˉ x ˉ u=-Kx=-\bar{K}\bar{x} u=Kx=Kˉxˉ,其中
K ˉ = K P = [ k 0 k 1 k 2 ⋯ k n − 1 ] \bar{K}=KP= \begin{bmatrix} k_0 & k_1 & k_2 & \cdots & k_{n-1} \end{bmatrix} Kˉ=KP=[k0k1k2kn1]
状态反馈后,闭环系统 { A ˉ − b ˉ K ˉ , b ˉ , c ˉ } \{\bar{A}-\bar{b}\bar{K},\bar{b},\bar{c}\} {AˉbˉKˉ,bˉ,cˉ}仍然时能控标准型, c ˉ \bar{c} cˉ不变,从而系统的传递函数的分子不变,系统的零点不变。
2.系统不能控时,结论仍然正确,可对系统先进行能控性分解,再证明。

2007 七、

1.系统的状态方程的解为
x ( t ) = e A t x ( 0 ) + ∫ 0 t e A t b u ( t − τ ) d τ x(t)=e^{At}x(0)+\int_0^te^{At}bu(t-\tau)\text{d}\tau x(t)=eAtx(0)+0teAtbu(tτ)dτ
在零初始态且输入为单位阶跃信号时,系统的输出响应为
y ( t ) = c x = c ( ∫ 0 t e A t b ⋅ 1 d τ ) = c ( ∫ 0 t e A t d τ ) b y(t)=cx=c\left(\int_0^te^{At}b\cdot1\text{d}\tau\right)=c\left(\int_0^te^{At}\text{d}\tau\right)b y(t)=cx=c(0teAtb1dτ)=c(0teAtdτ)b
令方阵函数 H ( t ) = A − 1 ( e A t − I ) H(t)=A^{-1}(e^{At}-I) H(t)=A1(eAtI),则 H ( 0 ) = O H(0)=\bm{O} H(0)=O
d d t H ( t ) = d d t ( A − 1 e A t − A − 1 ) = A − 1 d d t ( e A t ) = A − 1 ⋅ A e A t = e A t \frac{\text{d}}{\text{d}t}H(t)=\frac{\text{d}}{\text{d}t}(A^{-1}e^{At}-A^{-1})=A^{-1}\frac{\text{d}}{\text{d}t}(e^{At})=A^{-1}\cdot Ae^{At}=e^{At} dtdH(t)=dtd(A1eAtA1)=A1dtd(eAt)=A1AeAt=eAt
对上式两端自 0 0 0 t t t积分,得
∫ 0 t e A τ d τ = ∫ 0 t d d τ H ( τ ) d τ = H ( t ) − H ( 0 ) = H ( t ) = A − 1 ( e A t − I ) \int_0^te^{A\tau}\text{d}\tau=\int_0^t\frac{\text{d}}{\text{d}\tau}H(\tau)\text{d}\tau=H(t)-H(0)=H(t)=A^{-1}(e^{At}-I) 0teAτdτ=0tdτdH(τ)dτ=H(t)H(0)=H(t)=A1(eAtI)
将结果代入输出响应,可得要证明的结果
y ( t ) = c A − 1 ( e A t − I ) b y(t)=cA^{-1}(e^{At}-I)b y(t)=cA1(eAtI)b
2.反证法:
若矩阵 [ A − λ I b ] [A-\lambda I \enspace b] [AλIb]不满秩,则存在一个实数 λ \lambda λ及一个 1 × n 1\times n 1×n向量 q ≠ 0 q\not=0 q=0使得
q [ A − λ I b ] = 0 q[A-\lambda I \enspace b]=0 q[AλIb]=0
q A = λ q qA=\lambda q qA=λq q b = 0 qb=0 qb=0,所以 q q q A A A的左特征向量, λ \lambda λ A A A的特征值。进而可得
q A 2 = ( q A ) A = ( λ 1 q ) A = λ 1 2 q ⋯ ⋯ qA^2=(qA)A=(\lambda_1q)A=\lambda_1^2q\quad\cdots\cdots qA2=(qA)A=(λ1q)A=λ12q
如此下去,有 q A k = λ 1 n q qA^k=\lambda_1^nq qAk=λ1nq。因此,有
q [ b A b ⋯ A n − 1 b ] = [ q b λ 1 q b ⋯ λ 1 n − 1 q b ] q[b \enspace Ab \enspace \cdots \enspace A^{n-1}b]=[qb \enspace \lambda_1qb \enspace \cdots \enspace \lambda_1^{n-1}qb] q[bAbAn1b]=[qbλ1qbλ1n1qb]
这表明系统的能控性矩阵不满秩,它与系统能控的假设矛盾。命题得证。

2008 七、

1.若系统的能控性使用 P B H PBH PBH判别法鉴别,由于
[ s I − A B ] = [ s I − A − B k B ] [ I n 0 k I m ] \begin{bmatrix} sI-A & B \end{bmatrix}= \begin{bmatrix} sI-A-Bk & B \end{bmatrix} \begin{bmatrix} I_n & 0 \\ k & I_m \end{bmatrix} [sIAB]=[sIABkB][Ink0Im]
[ I n 0 k I m ] \begin{bmatrix} I_n & 0 \\ k & I_m \end{bmatrix} [Ink0Im]
满秩,可得
ρ [ s I − A − B k B ] = ρ [ s I − A B ] \rho \begin{bmatrix} sI-A-Bk & B \end{bmatrix}= \rho \begin{bmatrix} sI-A & B \end{bmatrix} ρ[sIABkB]=ρ[sIAB]
所以得到结论,状态反馈不改变系统能控性。
2.同一传递函数的两个最小实现具有相同的阶,也都能控,于是都存在状态变换使之与相应的能控标准型等价。设实现至能控标准型等价的变换矩阵分别为 P 1 P_1 P1 P 2 P_2 P2,则两个实现之间的变换矩阵为 P 1 P 2 − 1 P_1P_2^{-1} P1P21

2009 七、

1.设系统状态变换前后的状态空间方程为
x ˙ = A x + B u y = C x + D u , x ˉ ˙ = A ˉ x ˉ + B ˉ u y = C ˉ x ˉ + D ˉ u \begin{aligned} \dot{x}&=Ax+Bu \\ y&=Cx+Du \end{aligned}, \quad \quad \begin{aligned} \dot{\bar{x}}&=\bar{A}\bar{x}+\bar{B}u \\ y&=\bar{C}\bar{x}+\bar{D}u \end{aligned} x˙y=Ax+Bu=Cx+Du,xˉ˙y=Aˉxˉ+Bˉu=Cˉxˉ+Dˉu
变换矩阵为
x ˙ = P x ˉ ˙ \dot{x}=P\dot{\bar{x}} x˙=Pxˉ˙

A ˉ = P − 1 A P C ˉ = C P B ˉ = P − 1 B D ˉ = D \begin{aligned} \bar{A}&=P^{-1}AP \\ \bar{C}&=CP \end{aligned}\quad \quad \begin{aligned} \bar{B}&=P^{-1}B \\ \bar{D}&=D \end{aligned} AˉCˉ=P1AP=CPBˉDˉ=P1B=D
状态变换后系统的特征值为
f ˉ ( λ ) = det ⁡ ( λ I − A ˉ ) = det ⁡ ( λ I − P − 1 A P ) = det ⁡ [ P − 1 ( λ I − A ) P ] = d e t ( P − 1 ) d e t ( λ I − A ) det ⁡ ( P ) = d e t ( λ I − A ) = f ( λ ) \begin{aligned} \bar{f}(\lambda)&=\det(\lambda I-\bar{A}) \\ &=\det(\lambda I-P^{-1}AP) \\ &=\det[P^{-1}(\lambda I-A)P] \\ &=det(P^{-1})det(\lambda I -A)\det(P) \\ &=det(\lambda I-A) \\ &=f(\lambda) \end{aligned} fˉ(λ)=det(λIAˉ)=det(λIP1AP)=det[P1(λIA)P]=det(P1)det(λIA)det(P)=det(λIA)=f(λ)
系统的渐进稳定性和李雅普诺夫意义下的稳定性取决于特征值的分布,由上式可知,它们均不会因状态变换而改变。
状态变换后的系统传递函数为
G ˉ ( s ) = C ˉ ( s I − A ˉ ) − 1 B ˉ + D ˉ = C P ( s I − P − 1 A P ) − 1 P − 1 B + D = C P ( P ) − 1 ( s I − A ) − 1 ( P − 1 ) − 1 P − 1 B + D = C ( s I − A ) − 1 B + D \begin{aligned} \bar{G}(s)&=\bar{C}(sI-\bar{A})^{-1}\bar{B}+\bar{D} \\ &=CP(sI-P^{-1}AP)^{-1}P^{-1}B+D \\ &=CP(P)^{-1}(sI-A)^{-1}(P^{-1})^{-1}P^{-1}B+D\\ &=C(sI-A)^{-1}B+D \end{aligned} Gˉ(s)=Cˉ(sIAˉ)1Bˉ+Dˉ=CP(sIP1AP)1P1B+D=CP(P)1(sIA)1(P1)1P1B+D=C(sIA)1B+D
系统的 B I B O BIBO BIBO稳定性完全取决于系统既约传递函数的极点分布,由上式可知,它们均不会因状态变换而改变。
2.系统的能控性矩阵和能观性矩阵分别是
Q c = [ b A b A 2 b ⋯ A n − 1 b ] , Q o = [ c c A c A 2 ⋮ c A n − 1 ] Q_c= \begin{bmatrix} b & Ab & A^2b & \cdots & A^{n-1}b \end{bmatrix},\quad Q_o= \begin{bmatrix} c \\ cA \\ cA^2 \\ \vdots \\ cA^{n-1} \end{bmatrix} Qc=[bAbA2bAn1b],Qo=ccAcA2cAn1
它们的乘积为
Q C Q O = b c + A b c A + A 2 b c A 2 + ⋯ + A n − 1 b c A n − 1 = b c + b c A A + b c A 2 A 2 + ⋯ + b c A n − 1 A n − 1 = b a ( I + A 2 + A 4 + ⋯ + A 2 ( n − 1 ) ) \begin{aligned} Q_CQ_O&=bc+AbcA+A^2bcA^2+\cdots+A^{n-1}bcA^{n-1} \\ &=bc+bcAA+bcA^2A^2+\cdots+bcA^{n-1}A^{n-1} \\ &=ba(I+A^2+A^4+\cdots+A^{2(n-1)}) \end{aligned} QCQO=bc+AbcA+A2bcA2++An1bcAn1=bc+bcAA+bcA2A2++bcAn1An1=ba(I+A2+A4++A2(n1))
所以
r a n k ( Q c Q o ) ⩽ r a n k ( b c ) ⩽ 1 rank(Q_cQ_o)\leqslant rank(bc)\leqslant1 rank(QcQo)rank(bc)1
即当 n ⩾ 2 n\geqslant2 n2时,乘积矩阵不满秩,则其中至少一个不满秩,能控性与能观性至少有一个被破坏,系统不可能是既是能控又能观, { A , b , c } \{A,b,c\} {A,b,c}不是其传递函数的最小实现。

2010 七、

1.因为 { A , b , c } \{A,b,c\} {A,b,c}是传递函数 g ^ ( s ) \hat{g}(s) g^(s)的一个实现,故有
KaTeX parse error: Expected '}', got 'EOF' at end of input: …=c(sI-A)^{-1]b
而系统 { A T , c T , b T } \{A^T,c^T,b^T\} {AT,cT,bT}的传递函数为
g ^ T ( s ) = b T ( s I − A T ) − 1 c T = [ c ( s I − A ) − 1 b ] T = [ g ^ ( s ) ] T = g ^ ( s ) \hat{g}_T(s)=b^T(sI-A^T)^{-1}c^T=[c(sI-A)^{-1}b]^T=[\hat{g}(s)]^T=\hat{g}(s) g^T(s)=bT(sIAT)1cT=[c(sIA)1b]T=[g^(s)]T=g^(s)
这说明系统 { A T , c T , b T } \{A^T,c^T,b^T\} {AT,cT,bT}也是 g ^ ( s ) \hat{g}(s) g^(s)的一个实现,上式中最后一个等式能成立是因为传递函数 g ^ ( s ) \hat{g}(s) g^(s)是标量。
2.系统 { A , b , c } \{A,b,c\} {A,b,c}能达是指对状态空间中的任意状态 x r x_r xr,存在一定义在有限时间域 [ 0 , t f ] [0,t_f] [0,tf]上的控制函数 u r ( t ) u_r(t) ur(t),使得
x r = ∫ 0 t f − τ e A t B u r ( τ ) d τ x_r=\int_0^{t_f-\tau}e^{At}Bu_r(\tau)\text{d}\tau xr=0tfτeAtBur(τ)dτ
而系统 { A T , c T , b T } \{A^T,c^T,b^T\} {AT,cT,bT}能控是指对状态空间中的任意状态 x c x_c xc,存在一定义在有限时间域 [ 0 , t f ] [0,t_f] [0,tf]上的控制函数 u c ( t ) u_c(t) uc(t),使得
x ( t f ) = e A t f x c + ∫ 0 t f − τ e A τ b u c ( t ) d τ = 0 x(t_f)=e^{At_f}x_c+\int_0^{t_f-\tau}e^{A\tau}bu_c(t)\text{d}\tau=0 x(tf)=eAtfxc+0tfτeAτbuc(t)dτ=0

− e A t f x c = e A t f x c + ∫ 0 t f − τ e A τ b u c ( t ) d τ -e^{At_f}x_c=e^{At_f}x_c+\int_0^{t_f-\tau}e^{A\tau}bu_c(t)\text{d}\tau eAtfxc=eAtfxc+0tfτeAτbuc(t)dτ
显然,为了针对指定的传状态 x c x_c xc求实现能控的 u c ( t ) u_c(t) uc(t),可化归为针对目标状态 − e A t f x c -e^{At_f}x_c eAtfxc求实现能达的 u c ( t ) u_c(t) uc(t);同样为了针对指定的目标状态 x r x_r xr求实现能达的 u r ( t ) u_r(t) ur(t),可化归为针对目标状态 − e A t f x r -e^{At_f}x_r eAtfxr求实现能控的 u c ( t ) u_c(t) uc(t);由于 − e A t f x c -e^{At_f}x_c eAtfxc − e A t f x r -e^{At_f}x_r eAtfxr满秩,故上述两种化归均可顺利实现,即 − e A t f x c -e^{At_f}x_c eAtfxc − e A t f x r -e^{At_f}x_r eAtfxr都仍然能够保证在状态空间中的任意选取。

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值