2020哈尔滨工业大学801控制原理

1.(来源1:1998清华大学自动控制原理第1题;来源2:自动控制原理学习辅导知识精粹习题详解考研真题——孙优贤、王慧 P30.例2-5、P57.B2-24)水平硬质杆上固定 M 1 M_1 M1 M 2 M_2 M2 M 3 M_3 M3放置在水平桌面上,两个弹簧分别为 K 1 K_1 K1 K 2 K_2 K2,忽略所有摩擦,当转动硬质杆的一端,转过一个小角度,求十家的力 f f f(输入)与 M 2 M_2 M2的位移 x x x(输出)之间的传递函数。
在这里插入图片描述
杆的转动惯量
J = M 1 a 2 J=M_1a^2 J=M1a2
设杆的转角为 θ \theta θ,对 M 2 M_2 M2
M 2 x ¨ = k 2 ( a θ − x ) M_2\ddot{x}=k_2(a\theta-x) M2x¨=k2(aθx)
M 1 M_1 M1
M 1 a 2 θ ¨ = ( a + b + c ) f − k 1 ( a + b ) 2 θ − M 2 a x ¨ M_1a^2\ddot{\theta}=(a+b+c)f-k_1(a+b)^2\theta-M_2a\ddot{x} M1a2θ¨=(a+b+c)fk1(a+b)2θM2ax¨
因为 a = b = c a=b=c a=b=c
M 1 a θ ¨ = 3 f − 4 k 1 a θ − M 2 x ¨ M_1a\ddot{\theta}=3f-4k_1a\theta-M_2\ddot{x} M1aθ¨=3f4k1aθM2x¨
在零初始条件下对上式拉氏变换去除中间变量 θ \theta θ可得到传递函数
X ( s ) F ( s ) = k 2 M 1 M 2 s 4 + ( k 2 M 1 + k 2 M 2 + 4 k 1 M 2 ) s 2 + 4 k 1 k 2 \frac{X(s)}{F(s)}=\frac{k_2}{M_1M_2s^4+(k_2M_1+k_2M_2+4k_1M_2)s^2+4k_1k_2} F(s)X(s)=M1M2s4+(k2M1+k2M2+4k1M2)s2+4k1k2k2



2.(来源:自动控制原理学习辅导知识精粹习题详解考研真题——孙优贤、王慧 P77.例3-13)已知某负反馈系统的结构图如下图所示,其中 G ( s ) = 1 s 3 + 3.5 s 2 + 3.5 s + 1 G(s)=\cfrac{1}{s^3+3.5s^2+3.5s+1} G(s)=s3+3.5s2+3.5s+11,反馈通道传递函数为 H ( s ) = a s 2 + b s + c H(s)=as^2+bs+c H(s)=as2+bs+c,要求闭环系统的性能指标 σ p = 4.3 % \sigma_p=4.3\% σp=4.3% t s = . s ( Δ = 5 % ) t_s=.s(\Delta=5\%) ts=.s(Δ=5%),确定参数 a a a b b b c c c
在这里插入图片描述

根据系统的动态性能指标,设闭环主导极点为 s 1 , 2 = − ζ ω n ± j 1 − ζ 2 s_{1,2}=-\zeta\omega_n\pm j\sqrt{1-\zeta^2} s1,2=ζωn±j1ζ2 ,另一个极点为 s 3 = − d s_3=-d s3=d,由题目要求
{ σ p = e − π ζ 1 − ζ 2 × 100 % = 4.3 % T s = 3 ζ ω n = 3 \left\{\begin{array}{l} \sigma_p=e^{-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}}\times100\%=4.3\% \\ T_s=\frac{3}{\zeta\omega_n}=3 \end{array}\right. {σp=e1ζ2 πζ×100%=4.3%Ts=ζωn3=3
解得
{ ζ = 0.707 ω n = 1.866   rad/s \left\{\begin{array}{l} \zeta=0.707 \\ \omega_n=1.866\,\text{rad/s} \end{array}\right. {ζ=0.707ωn=1.866rad/s
则有
s 2 + 2 ζ ω n + ω n 2 = s 2 + 2 s + s = 0 s^2+2\zeta\omega_n+\omega_n^2=s^2+2s+s=0 s2+2ζωn+ωn2=s2+2s+s=0
系统的特征方程为
Δ ( s ) = ( s 2 + 2 s + s ) ( s + d ) = s 3 + ( d + 2 ) s 2 + ( 2 d + 2 ) s + 2 d \begin{aligned} \Delta(s)&=(s^2+2s+s)(s+d)\\ &=s^3+(d+2)s^2+(2d+2)s+2d \end{aligned} Δ(s)=(s2+2s+s)(s+d)=s3+(d+2)s2+(2d+2)s+2d
系统的闭环传递函数为
Φ ( s ) = G ( s ) 1 + G ( s ) H ( s ) = 1 s 3 + ( a + 3.5 ) s 2 + ( b + 3.5 ) s + c + 1 \begin{aligned} \Phi(s)&=\frac{G(s)}{1+G(s)H(s)} \\ &=\frac{1}{s^3+(a+3.5)s^2+(b+3.5)s+c+1} \end{aligned} Φ(s)=1+G(s)H(s)G(s)=s3+(a+3.5)s2+(b+3.5)s+c+11
对两特征方程可得
{ a + 3.5 = d + 2 b + 3.5 = 2 d + 2 c + 1 = 2 d \left\{\begin{array}{l} a+3.5=d+2 \\ b+3.5=2d+2 \\ c+1=2d \end{array}\right. a+3.5=d+2b+3.5=2d+2c+1=2d
因为 s 3 = − d s_3=-d s3=d为非主导极点,所以有 d ⩾ 5 ζ ω n = 5 d\geqslant5\zeta\omega_n=5 d5ζωn=5,若取 d = 6 d=6 d=6,可得
{ a + = 4.5 b = 10.5 c = 11 \left\{\begin{array}{l} a+=4.5 \\ b=10.5 \\ c=11 \end{array}\right. a+=4.5b=10.5c=11
反馈通道传递函数为
H ( s ) = 4.5 s 2 + 10.5 s + 11 H(s)=4.5s^2+10.5s+11 H(s)=4.5s2+10.5s+11



3.某系统的结构图如图:
在这里插入图片描述
(1)要使闭环系统渐近稳定,确定 K 0 K_0 K0 K 1 K_1 K1的取值范围,并在 K 0 — K 1 K_0—K_1 K0K1平面表示。
(2)在输入信号 r ( t ) = 0.5 t 2 r(t)=0.5t^2 r(t)=0.5t2的作用下,系统的稳态误差为 0 0 0,求此时的 G c ( s ) G_c(s) Gc(s)
(1)系统的闭环传递函数为
C ( s ) R ( s ) = [ 1 + 2 s + G c ( s ) ] ⋅ K 0 s ( s + 1 ) 1 + K 0 s ( s + 1 ) ⋅ ( K 1 s + 1 + 2 s ) = K 0 [ s G c ( s ) + s + 2 ] s 3 + ( 1 + K 0 K 1 ) s 2 + K 0 s + 2 K 0 \begin{aligned} \frac{C(s)}{R(s)} &= \left[1+\frac{2}{s}+G_c(s)\right]\cdot \frac{\cfrac{K_0}{s(s+1)}}{1+\cfrac{K_0}{s(s+1)}\cdot \left(K_1s+1+\cfrac{2}{s}\right)} \\ &= \frac{K_0[sG_c(s)+s+2]}{s^3+(1+K_0K_1)s^2+K_0s+2K_0} \end{aligned} R(s)C(s)=[1+s2+Gc(s)]1+s(s+1)K0(K1s+1+s2)s(s+1)K0=s3+(1+K0K1)s2+K0s+2K0K0[sGc(s)+s+2]
闭环特征方程为
Δ ( s ) = s 3 + ( 1 + K 0 K 1 ) s 2 + K 0 s + 2 K 0 \Delta(s)=s^3+(1+K_0K_1)s^2+K_0s+2K_0 Δ(s)=s3+(1+K0K1)s2+K0s+2K0
劳斯表
s 3 1 K 0 s 2 1 + K 0 K 1 2 K 0 s 1 K 0 ( 1 + K 0 K 1 − 2 ) 1 + K 0 K 1 s 0 2 K 0 \begin{matrix} s^3 & 1 & K_0 \\ s^2 & 1+K_0K_1 & 2K_0 \\ s^1 & \cfrac{K_0(1+K_0K_1-2)}{1+K_0K_1} & \\ s^0 & 2K_0 & & \\ \end{matrix} s3s2s1s011+K0K11+K0K1K0(1+K0K12)2K0K02K0
要使闭环系统渐近稳定,劳斯表第一列大于零,则有
{ K 0 > 0 K 1 > 1 K 0 \left\{\begin{array}{l} K_0>0 \\ K_1>\cfrac{1}{K_0} \end{array}\right. K0>0K1>K01
K 0 — K 1 K_0—K_1 K0K1平面
在这里插入图片描述
(2)系统误差传递函数
Φ e ( s ) = 1 − G c ( s ) ⋅ K 0 s ( s + 1 ) 1 + K 0 K 1 s + 1 1 + ( 1 + 2 s ) ⋅ K 0 s ( s + 1 ) 1 + K 0 K 1 s + 1 = s 3 + ( 1 + K 0 K 1 ) s 2 − K 0 s G c ( s ) s 3 + ( 1 + K 0 K 1 ) s 2 + K 0 s + 2 K 0 \begin{aligned} \Phi_e(s) &= \frac{1-G_c(s)\cdot \cfrac{\cfrac{K_0}{s(s+1)}}{1+\cfrac{K_0K_1}{s+1}}}{1+\left(1+\cfrac{2}{s}\right)\cdot \cfrac{\cfrac{K_0}{s(s+1)}}{1+\cfrac{K_0K_1}{s+1}}} \\ &= \frac{s^3+(1+K_0K_1)s^2-K_0sG_c(s)}{s^3+(1+K_0K_1)s^2+K_0s+2K_0} \end{aligned} Φe(s)=1+(1+s2)1+s+1K0K1s(s+1)K01Gc(s)1+s+1K0K1s(s+1)K0=s3+(1+K0K1)s2+K0s+2K0s3+(1+K0K1)s2K0sGc(s)
在输入信号 r ( t ) = 1 2   t 2 r(t)=\cfrac{1}{2}\,t^2 r(t)=21t2作用下,系统的稳态误差为 0 0 0,即
lim ⁡ s → 0 s ⋅ R ( s ) Φ e ( s ) = lim ⁡ s → 0 s ⋅ 1 s 3 ⋅ Φ e ( s ) = lim ⁡ s → 0 1 s 2 [ s 3 + ( 1 + K 0 K 1 ) s 2 − K 0 s G c ( s ) ] = 0 \begin{aligned} \lim\limits_{s\rightarrow0}s\cdot R(s)\Phi_e(s) &= \lim\limits_{s\rightarrow0}s\cdot\cfrac{1}{s^3}\cdot\Phi_e(s) \\ &=\lim\limits_{s\rightarrow0} \frac{1}{s^2}[s^3+(1+K_0K_1)s^2-K_0sG_c(s)] \\ &= 0 \end{aligned} s0limsR(s)Φe(s)=s0limss31Φe(s)=s0lims21[s3+(1+K0K1)s2K0sGc(s)]=0
可得
G c ( s ) = ( 1 K 0 + K 1 ) s G_c(s)=\left( \frac{1}{K_0}+K_1 \right)s Gc(s)=(K01+K1)s



4.有一个三阶开环系统,没有闭环零点,在斜坡信号 r ( t ) = t r(t)=t r(t)=t作用下的稳态误差为常数:
(1)由已知两个极点 s = − 2 s=-2 s=2 s = − 4 s=-4 s=4,请确定其开环传递函数,并绘制根轨迹,求出汇合分离点,与虚轴交点等信息。
(2)若已知有一个极点是 − 5 -5 5,请确定传递函数,并求出对应的稳态误差和超调量。
三阶系统,无闭环零点,且在斜坡信号下的稳态误差为常数,故系统为 I \text{I} I型系统,设系统的开环传递函数为
G ( s ) = K s ( s + a ) ( s + b ) G(s)=\frac{K}{s(s+a)(s+b)} G(s)=s(s+a)(s+b)K
(1)已知两个极点为 s = − 2 s=-2 s=2 s = − 4 s=-4 s=4,系统的传递函数为
G ( s ) = K s ( s + 2 ) ( s + 4 ) G(s)=\frac{K}{s(s+2)(s+4)} G(s)=s(s+2)(s+4)K
系统的根轨迹方程为
K s ( s + 2 ) ( s + 4 ) = − 1 \frac{K}{s(s+2)(s+4)}=-1 s(s+2)(s+4)K=1
n = 3 n=3 n=3 m = 0 m=0 m=0,根轨迹有 3 3 3条分支
②根轨迹的起点: P 1 = 0 P_1=0 P1=0 P 2 = − 2 P_2=-2 P2=2 P 3 = − 4 P_3=-4 P3=4
③实轴上的根轨迹: ( − ∞ , − 4 ] (-\infin,-4] (,4] [ − 2 , 0 ) [-2,0) [2,0)
④根轨迹的渐近线:
φ = ( 2 k + 1 ) π 3 − 0    ⟹    k = 0 , φ = 60 ° ; k = 1 , φ = 300 ° σ = − 2 − 4 3 = − 2 \varphi=\frac{(2k+1)\pi}{3-0} \implies k=0,\varphi=60°;k=1,\varphi=300° \\ \sigma=\frac{-2-4}{3}=-2 φ=30(2k+1)πk=0,φ=60°;k=1,φ=300°σ=324=2
⑤根轨迹的汇合点和分离点
W ( s ) = s 3 + 6 s 2 + s = 0    ⟹    d W ( s ) ds = 3 s 2 + 12 s + 8 = 0 s 1 = − 0.845 ( 分 离 点 ) ,   s 2 = − 3.155 ( 舍 去 ) W(s)=s^3+6s^2+s=0 \implies \frac{\text{d}W(s)}{\text{ds}}=3s^2+12s+8=0 \\ s_1=-0.845(分离点),\ s_2=-3.155(舍去) W(s)=s3+6s2+s=0dsdW(s)=3s2+12s+8=0s1=0.845, s2=3.155
⑥根轨迹与虚轴交点
Δ ( s ) = s 3 + 6 s 2 + 8 s + K \Delta(s)=s^3+6s^2+8s+K Δ(s)=s3+6s2+8s+K
s = j ω s=j\omega s=jω
Δ ( j ω ) = ( K − 6 ω 2 ) + j ( 8 ω − ω 3 ) \Delta(j\omega)=(K-6\omega^2)+j(8\omega-\omega^3) Δ(jω)=(K6ω2)+j(8ωω3)
令实部和虚部为零,可得
{ K = 48 ω = 2.828 \left\{\begin{array}{l} K=48 \\ \omega=2.828 \end{array}\right. {K=48ω=2.828
根轨迹与虚轴交点为 s 1 , 2 = ± j 2.828 s_{1,2}=\pm j2.828 s1,2=±j2.828
系统的根轨迹如图所示
在这里插入图片描述
(2)已知其中一个极点为 − 5 -5 5,将其代入特征方程中
Δ ( 5 ) = − 125 + 150 − 40 + K = 0 \Delta(5)=-125+150-40+K=0 Δ(5)=125+15040+K=0
解得
K = 15 K=15 K=15
系统的传递函数为
G ( s ) = 15 s ( s + 2 ) ( s + 4 ) = 1.875 s ( 0.5 s + 1 ) ( 025 s + 1 ) \begin{aligned} G(s) &= \frac{15}{s(s+2)(s+4)} \\ &=\frac{1.875}{s(0.5s+1)(0 25s+1)} \end{aligned} G(s)=s(s+2)(s+4)15=s(0.5s+1)(025s+1)1.875
系统的稳态误差为
e s s ( ∞ ) = 1 K v = 1.875 e_{ss}(\infin)=\frac{1}{K_v}=1.875 ess()=Kv1=1.875
K K K代入特征方程,可解得
s 1 = − 5 ,   s 2 , 3 = − 0.5 ± j 1.658 s_1=-5,\ s_{2,3}=-0.5\pm j1.658 s1=5, s2,3=0.5±j1.658
s 2 , 3 s_{2,3} s2,3为系统的主导极点,系统的超调量为
σ p = e − π ζ 1 − ζ 2 × 100 % = e − 0.5 π 1.658 × 100 % = 38.775 % \begin{aligned} \sigma_p &= e^{-\cfrac{\pi\zeta}{\sqrt{1-\zeta^2}}}\times100\% \\ &= e^{-\cfrac{0.5\pi}{1.658}}\times100\% \\ &= 38.775\% \end{aligned} σp=e1ζ2 πζ×100%=e1.6580.5π×100%=38.775%



5.二阶线性最小相位单位负反馈系统的开环奈奎斯特图如下,根据图中信息确定闭环传递函数,并绘制开环渐近对数幅频特性图。
在这里插入图片描述
奈奎斯曲线初始角为 − 90 ° -90° 90°,该系统为 I \text{I} I型系统,终止角为 − 180 ° -180° 180°,设系统开环传递函数为
G ( s ) = K s ( T s + 1 ) G(s)=\frac{K}{s(Ts+1)} G(s)=s(Ts+1)K
系统的频率特性为
G ( j ω ) = − K T 1 + T 2 ω 2 − j K ω + T 2 ω 3 G(j\omega)=-\frac{KT}{1+T^2\omega^2}-j\frac{K}{\omega+T^2\omega^3} G(jω)=1+T2ω2KTjω+T2ω3K
由图可知,当 ω = 0 + \omega=0^+ ω=0+时, − K T = − 2 -KT=-2 KT=2;当 ω = 2 \omega=2 ω=2时, − K T 1 + 4 T 2 = − 1 -\cfrac{KT}{1+4T^2}=-1 1+4T2KT=1,联立两式可解得
{ K = 4 T = 0.5 \left\{\begin{array}{l} K=4 \\ T=0.5 \end{array}\right. {K=4T=0.5
系统的闭环传递函数为
Φ ( s ) = G ( s ) 1 + G ( s ) = 4 0.5 s 2 + s + 4 \begin{aligned} \Phi(s) &= \frac{G(s)}{1+G(s)} \\ &= \frac{4}{0.5s^2+s+4} \end{aligned} Φ(s)=1+G(s)G(s)=0.5s2+s+44
根据系统的开环传递函数,开环渐近对数幅频特性曲线初始斜率为 − 20   dB/dec -20\,\text{dB/dec} 20dB/dec,转折频率为 ω = 2   rad/s \omega=2\,\text{rad/s} ω=2rad/s,由
L ( 1 ) = 20 lg ⁡ K L(1)=20\lg K L(1)=20lgK可知,低频段的延长线过点 ( 1 , 12 ) (1,12) (1,12);由 20 lg ⁡ 4 ω c ⋅ 0.5 ω c 20\lg\cfrac{4}{\omega_c\cdot 0.5\omega_c} 20lgωc0.5ωc4,可知系统的截至频率 ω c = 2 2 rad/s \omega_c=2\sqrt{2}\text{rad/s} ωc=22 rad/s,图略。



6.某单位负反馈系统的开环传递函数为 G ( s ) = 2 s ( s + 1 ) ( 0.0.2 s + 1 ) G(s)=\cfrac{2}{s(s+1)(0.0.2s+1)} G(s)=s(s+1)(0.0.2s+1)2,试设计串联校正装置,满足下列要求:
(1)要求斜坡输入信号下的稳态误差为 e s s ( ∞ ) = 0.01 e_{ss}(\infin)=0.01 ess()=0.01
(2) 0.6 ⩽ ω c ⩽ 1 rad/s 0.6 \leqslant \omega_c \leqslant 1 \text{rad/s} 0.6ωc1rad/s
(3) γ ⩾ 40 ° \gamma\geqslant40° γ40°
确定校正装置 G c ( s ) G_c(s) Gc(s)
I \text{I} I系统,斜坡输入信号下稳态误差为
e s s ( ∞ ) = 1 K v = 0.5 e_{ss}(\infin)=\frac{1}{K_v}=0.5 ess()=Kv1=0.5
根据题目要求斜坡输入信号下的稳态误差为 e s s ( ∞ ) = 0.01 e_{ss}(\infin)=0.01 ess()=0.01,设校正装置增益为 K c = 50 K_c=50 Kc=50,此时系统的开环传递函数为
G 1 ( s ) = 100 s ( s + 1 ) ( 0.02 s + 1 ) G_1(s)=\frac{100}{s(s+1)(0.02s+1)} G1(s)=s(s+1)(0.02s+1)100
截止频率
100 ω c 1 ω c 1 2 + 1 0.0004 ω c 1 2 + 1 = 1 \frac{100}{\omega_{c1}\sqrt{\omega_{c1}^2+1}\sqrt{0.0004\omega_{c1}^2+1}}=1 ωc1ωc12+1 0.0004ωc12+1 100=1
解得
ω c 1 = 9.88   rad/s \omega_{c1}=9.88\,\text{rad/s} ωc1=9.88rad/s
相角裕度
γ 1 = 180 ° − 90 ° − arctan ⁡ ω c 1 − arctan ⁡ 0.02 ω c 1 = − 5.4 ° \gamma_1=180°-90°-\arctan\omega_{c1}-\arctan0.02\omega_{c1}=-5.4° γ1=180°90°arctanωc1arctan0.02ωc1=5.4°
故可使用滞后校正,设控制器为
G c ( s ) = 50 ( τ s + 1 ) β τ s + 1 G_c(s)=\frac{50(\tau s+1)}{\beta\tau s+1} Gc(s)=βτs+150(τs+1)
∠ G 1 ( j ω ) \angle G_1(j\omega) G1(jω)选取相角
∠ G 1 ( j ω ) = − 180 ° + γ c + 10 ° = − 130 ° \angle G_1(j\omega)=-180°+\gamma_c+10°=-130° G1(jω)=180°+γc+10°=130°
对应的角频率为
ω c = 0.812   rad/s \omega_c=0.812\,\text{rad/s} ωc=0.812rad/s
20 lg ⁡ ∣ G 1 ( j ω c ) ∣ = 20 lg ⁡ β 20\lg|G_1(j\omega_c)|=20\lg\beta 20lgG1(jωc)=20lgβ可得
β = 95.59 \beta=95.59 β=95.59
1 τ = 1 10   ω c \cfrac{1}{\tau}=\cfrac{1}{10}\,\omega_c τ1=101ωc可得
τ = 12.32     β τ = 1177.22 \tau=12.32\ \ \ \beta\tau=1177.22 τ=12.32   βτ=1177.22
故校正装置为
G c ( s ) = 50 ( 12.32 s + 1 ) 1177.22 s + 1 G_c(s)=\frac{50(12.32s+1)}{1177.22s+1} Gc(s)=1177.22s+150(12.32s+1)
校正后系统的传递函数为
G c ( s ) G ( s ) = 100 ( 12.32 s + 1 ) s ( s + 1 ) ( 0.02 s + 1 ) ( 1177.22 s + 1 ) G_c(s)G(s)=\frac{100(12.32s+1)}{s(s+1)(0.02s+1)(1177.22s+1)} Gc(s)G(s)=s(s+1)(0.02s+1)(1177.22s+1)100(12.32s+1)



7.某非线性系统结构如图所示,非线性环节描述为 N ( A ) = 16 π A 1 − ( 1 A ) 2 N(A)=\cfrac{16}{\pi A}\sqrt{1-(\cfrac{1}{A})^2} N(A)=πA161(A1)2 ,分析是否会产生自激振荡,若产生,求振荡角频率及振幅,若不产生,说明理由。
在这里插入图片描述
方框图化简
在这里插入图片描述
在这里插入图片描述
系统线性部分传递函数为
G ( s ) = 2 s ( s 2 + 2 s + 2 ) G(s)=\frac{2}{s(s^2+2s+2)} G(s)=s(s2+2s+2)2
线性部分频率特性
G ( j ω ) = 2 j ω ( − ω 2 + 2 j ω + 2 ) = − 4 ( 2 − ω 2 ) 2 + 4 ω 2 − j 2 ( 2 − ω 2 ) 2 ω [ ( 2 − ω 2 ) 2 + 4 ω 2 ] \begin{aligned} G(j\omega) &= \frac{2}{j\omega(-\omega^2+2j\omega+2)} \\ &= -\frac{4}{(2-\omega^2)^2+4\omega^2}-j\frac{2(2-\omega^2)^2}{\omega[(2-\omega^2)^2+4\omega^2]} \end{aligned} G(jω)=jω(ω2+2jω+2)2=(2ω2)2+4ω24jω[(2ω2)2+4ω2]2(2ω2)2
ω = 0 + \omega=0^+ ω=0+时, G ( j 0 + ) = − 1 − j ∞ G(j0^+)=-1-j\infin G(j0+)=1j ∠ G ( j 0 + ) = − 90 ° \angle G(j0^+)=-90° G(j0+)=90°;当 ω → ∞ \omega\rightarrow\infin ω时, G ( j ∞ ) → 0 G(j\infin)\rightarrow0 G(j)0 ∠ G ( j ∞ ) = − 270 ° \angle G(j\infin)=-270° G(j)=270°;令 G ( j ω ) G(j\omega) G(jω)的虚部为零,可得 ω = 2 \omega=\sqrt{2} ω=2 ,代入 G ( j ω ) G(j\omega) G(jω)的实部,得到奈奎斯曲线与实轴的交点为 − 0.5 -0.5 0.5
非线性部分,负倒描述函数为
− 1 N ( A ) = − π A 16 1 − ( 1 A ) 2 -\frac{1}{N(A)}=-\frac{\pi A}{16\sqrt{1-\left(\cfrac{1}{A}\right)^2}} N(A)1=161(A1)2 πA
A → + ∞ A\rightarrow+\infin A+时, − 1 N ( + ∞ ) → − ∞ -\cfrac{1}{N(+\infin)}\rightarrow -\infin N(+)1;当 A = 2 A=\sqrt{2} A=2 时,负倒描述函数取最大值 − 1 N ( 2 ) ≈ − 0.392 -\cfrac{1}{N(\sqrt{2})}\approx-0.392 N(2 )10.392 G ( j ω ) G(j\omega) G(jω) − 1 N ( A ) -\cfrac{1}{N(A)} N(A)1图像为
在这里插入图片描述
G ( j ω ) G(j\omega) G(jω)曲线与 − 1 N ( A ) -\cfrac{1}{N(A)} N(A)1曲线有两个交点,则
− 1 N ( A ) = − 0.5 -\frac{1}{N(A)}=-0.5 N(A)1=0.5
解得
{ A 1 = 2.29 ω = 2   rad/s    { A 2 = 1.11 ω = 2   rad/s \left\{\begin{array}{l} A_1=2.29 \\ \omega=\sqrt{2}\,\text{rad/s} \end{array}\right.\ \ \left\{\begin{array}{l} A_2=1.11 \\ \omega=\sqrt{2}\,\text{rad/s} \end{array}\right. {A1=2.29ω=2 rad/s  {A2=1.11ω=2 rad/s
奈奎斯曲线包围的区域为不稳定区域, − 1 N ( A ) -\cfrac{1}{N(A)} N(A)1曲线沿着 A A A增大的方向,由不稳定区域进入稳定区域的交点为 A 1 A_1 A1 A 2 A_2 A2不是,因此系统产生自激振荡,振荡频率为 ω = 2   rad/s \omega=\sqrt{2}\,\text{rad/s} ω=2 rad/s,振幅为 A 1 = 2.29 A_1=2.29 A1=2.29



8.某离散系统的结构图如下图所示,其中 G d ( z ) = ( z + 0.92 ) ( z + 3 ) z ( z − 1 ) ( z + 0.5 ) G_d(z)=\cfrac{(z+0.92)(z+3)}{z(z-1)(z+0.5)} Gd(z)=z(z1)(z+0.5)(z+0.92)(z+3),采样周期为 1 1 1秒,针对单位阶跃输入信号,设计一个最少拍数字控制器 D ( z ) D(z) D(z),并判断所设计系统采样点之间是否有振荡。
在这里插入图片描述

将系统的开环脉冲传递函数化为
G d ( z ) = z − 1 ( 1 + 0.92 z − 1 ) ( 1 + 3 z − 1 ) ( 1 − z − 1 ) ( 1 + 0.5 z − 1 ) G_d(z)=\frac{z^{-1}(1+0.92z^{-1})(1+3z^{-1})}{(1-z^{-1})(1+0.5z^{-1})} Gd(z)=(1z1)(1+0.5z1)z1(1+0.92z1)(1+3z1)
G d ( z ) G_d(z) Gd(z)中包含 z − 1 z^{-1} z1零点以及单位圆外的 z = − 3 z=-3 z=3零点,最小拍数字控制器 D ( z ) D(z) D(z)也应含有 z − 1 z^{-1} z1零点以及单位圆外的 z = − 3 z=-3 z=3零点,设 Φ ( z ) \Phi(z) Φ(z)的形式为
Φ ( z ) = a z − 1 ( 1 + 3 z − 1 ) \Phi(z)=az^{-1}(1+3z^{-1}) Φ(z)=az1(1+3z1)
Φ e ( z ) \Phi_e(z) Φe(z)的形式为
Φ e ( z ) = ( 1 − z − 1 ) ( 1 + b z − 1 ) \Phi_e(z)=(1-z^{-1})(1+bz^{-1}) Φe(z)=(1z1)(1+bz1)
Φ e ( z ) = 1 − Φ ( z ) \Phi_e(z)=1-\Phi(z) Φe(z)=1Φ(z)解得
{ a = 0.25 b = 0.75 \left\{\begin{array}{l} a=0.25 \\ b=0.75 \end{array}\right. {a=0.25b=0.75
最小拍数字控制器的脉冲传递函数为
D ( z ) = Φ ( z ) G d ( z ) Φ e ( z ) = 0.25 ( 1 + 0.5 z − 1 ) ( 1 + 0.92 z − 1 ) ( 1 + 0.75 z − 1 ) \begin{aligned} D(z)&=\frac{\Phi(z)}{G_d(z)\Phi_e(z)} \\ &=\frac{0.25(1+0.5z^{-1})}{(1+0.92z^{-1})(1+0.75z^{-1})} \end{aligned} D(z)=Gd(z)Φe(z)Φ(z)=(1+0.92z1)(1+0.75z1)0.25(1+0.5z1)
系统的误差输出为
E ( z ) = Φ ( z ) R ( z ) = ( 1 − z − 1 ) ( 1 + 3 z − 1 ) ⋅ 1 1 − z − 1 = 1 + 0.75 z − 1 \begin{aligned} E(z)&=\Phi(z)R(z) \\ &=(1-z^{-1})(1+3z^{-1})\cdot \frac{1}{1-z^{-1}} \\ &= 1+0.75z^{-1} \end{aligned} E(z)=Φ(z)R(z)=(1z1)(1+3z1)1z11=1+0.75z1
数字控制器输出为
E 1 ( z ) = E ( z ) D ( z ) = ( 1 + 0.75 z − 1 ) ⋅ 0.25 ( 1 + 0.5 z − 1 ) ( 1 + 0.92 z − 1 ) ( 1 + 0.75 z − 1 ) = 0.25 − 0.105 z − 1 + 0.0966 z − 2 − 0.089 z − 3 + ⋯ \begin{aligned} E_1(z)&=E(z)D(z) \\ &=(1+0.75z^{-1})\cdot \frac{0.25(1+0.5z^{-1})}{(1+0.92z^{-1})(1+0.75z^{-1})} \\ &= 0.25-0.105z^{-1}+0.0966z^{-2}-0.089z^{-3}+\cdots \end{aligned} E1(z)=E(z)D(z)=(1+0.75z1)(1+0.92z1)(1+0.75z1)0.25(1+0.5z1)=0.250.105z1+0.0966z20.089z3+
由上式可知,最少拍系统经过一拍后,两个采样点之间的稳态误差并不为零,出现正负值交替的振荡。



9.某系统的状态空间方程:
[ x ˙ 1 x ˙ 2 x ˙ 3 ] = [ 0 1 0 2 0 1 0 3 2 ] x + [ 0 0 2 ] u \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix}= \begin{bmatrix} 0 & 1 & 0 \\ 2 & 0 & 1 \\ 0 & 3 & 2 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} u x˙1x˙2x˙3=020103012x+002u
(1)若 y = x 1 + 2 x 2 + 3 x 3 y=x_1+2x_2+3x_3 y=x1+2x2+3x3(试写出另一种实现,使得其输入输出的物理意义均不变),且输出是第一个状态变量。
(2)若 y = x 1 y=x_1 y=x1,(同括号)且输出为 3 3 3个状态变量之和。
(1)系统的能观测矩阵为
Q o = [ C C A C A 2 ] = [ 1 2 3 4 10 8 20 28 20 ] Q_o= \begin{bmatrix} C \\ CA \\ CA^2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 10 & 8 \\ 20 & 28 & 20 \end{bmatrix} Qo=CCACA2=1420210283820
rank   Q o = 3 \text{rank}\, Q_o=3 rankQo=3,系统完全能观,系统的能观标准型为
A o = Q o A Q o − 1 = [ 0 1 0 0 0 1 − 4 5 2 ] B o = Q o B = [ 6 16 52 ] C o = C Q o − 1 = [ 1 0 0 ] A_o=Q_oAQ_o^{-1}= \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -4 & 5 & 2 \end{bmatrix} \\ B_o=Q_oB= \begin{bmatrix} 6 \\ 16 \\ 52 \end{bmatrix} \\ C_o=CQ_o^{-1}= \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} Ao=QoAQo1=004105012Bo=QoB=61652Co=CQo1=[100]
系统的状态空间方程为
{ x ˙ = [ 0 1 0 0 0 1 − 4 5 2 ] x + [ 6 16 52 ] u y = [ 1 0 0 ] x \left\{\begin{array}{l} \dot x= \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -4 & 5 & 2 \end{bmatrix} x + \begin{bmatrix} 6 \\ 16 \\ 52 \end{bmatrix} u \\ y= \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x \end{array}\right. x˙=004105012x+61652uy=[100]x
(2)设 P P P为变换矩阵,矩阵 C C C经过变换后为
C 1 = C P = [ 1 1 1 ] C_1=CP=\begin{bmatrix} 1 & 1 & 1 \end{bmatrix} C1=CP=[111]
则变换矩阵可取
P = [ 1 1 1 0 1 1 0 0 1 ] P= \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} P=100110111
经过可逆线性变换后
A o = P − 1 A P = [ − 2 − 4 − 5 2 2 3 0 3 2 ] B o = Q o B = [ − 2 0 2 ] A_o=P^{-1}AP= \begin{bmatrix} -2 & -4 & -5 \\ 2 & 2 & 3 \\ 0 & 3 & 2 \end{bmatrix} \\ B_o=Q_oB= \begin{bmatrix} -2 \\ 0 \\ 2 \end{bmatrix} \\ Ao=P1AP=220423532Bo=QoB=202
系统的状态空间方程为
{ x ˙ = [ − 2 − 4 − 5 2 2 3 0 3 2 ] x + [ − 2 0 2 ] u y = [ 1 1 1 ] x \left\{\begin{array}{l} \dot x= \begin{bmatrix} -2 & -4 & -5 \\ 2 & 2 & 3 \\ 0 & 3 & 2 \end{bmatrix} x + \begin{bmatrix} -2 \\ 0 \\ 2 \end{bmatrix} u \\ y= \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} x \end{array}\right. x˙=220423532x+202uy=[111]x



10.某系统的状态空间方程为:
{ x ˙ = [ 0 1 0 2 1 3 0 2 0 ] x + [ 0 0 2 ] u y = [ 0 0 1 ] x \left\{\begin{array}{l} \dot x= \begin{bmatrix} 0 & 1 & 0 \\ 2 & 1 & 3 \\ 0 & 2 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} u \\ y= \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} x \end{array}\right. x˙=020112030x+002uy=[001]x
设计一个降维观测器,使得观测极点为 − 2 -2 2 − 5 -5 5,写出降维观测器方程及状态估计的表达式。
系统的能观测矩阵为
Q o = [ C C A C A 2 ] = [ 0 0 1 0 2 0 4 2 6 ] Q_o= \begin{bmatrix} C \\ CA \\ CA^2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 4 & 2 & 6 \end{bmatrix} Qo=CCACA2=004022106
rank   Q o = 3 \text{rank}\, Q_o=3 rankQo=3,系统完全能观, rank C = 1 \text{rank}C=1 rankC=1,可以设计 n − m = 2 n-m=2 nm=2维观测器,选取
R = [ 1 0 1 0 1 0 ] R= \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} R=[100110]
取线性变换矩阵
P = [ C R ] = [ 0 0 1 1 0 1 0 1 0 ] P= \begin{bmatrix} C \\ R \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} P=[CR]=010001110
可得
Q = P − 1 = [ − 1 1 0 0 0 1 1 0 0 ]    Q 1 = [ − 1 0 1 ]    Q 2 = [ 1 0 0 1 0 0 ] Q=P^{-1}= \begin{bmatrix} -1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \ \ Q_1= \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \ \ Q_2= \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} Q=P1=101100010  Q1=101  Q2=100010
计算 A ˉ \bar{A} Aˉ B ˉ \bar{B} Bˉ
A ˉ = P A P − 1 = [ 0 0 2 0 0 3 1 2 1 ]    B ˉ = P B = [ 2 2 0 ] A ˉ 22 = [ 0 3 2 1 ]    A ˉ 12 = [ 0 2 ]    B ˉ 1 = [ 2 ]    B ˉ 2 = [ 2 0 ] \bar{A}=PAP^{-1}= \left[ \begin{array}{c:cc} 0 & 0 & 2 \\ \hdashline 0 & 0 & 3 \\ 1 & 2 & 1 \end{array} \right] \ \ \bar{B}=PB= \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix} \\ \bar{A}_{22}= \begin{bmatrix} 0 & 3 \\ 2 & 1 \end{bmatrix} \ \ \bar{A}_{12}= \begin{bmatrix} 0 & 2 \\ \end{bmatrix} \ \ \bar{B}_{1}= \begin{bmatrix} 2 \end{bmatrix} \ \ \bar{B}_{2}= \begin{bmatrix} 2 \\ 0 \end{bmatrix} Aˉ=PAP1=001002231  Bˉ=PB=220Aˉ22=[0231]  Aˉ12=[02]  Bˉ1=[2]  Bˉ2=[20]
根据题目期望的观测极点,得到期望特征方程
Δ 1 ( s ) = s 2 + 7 s + 10 \Delta_1(s)=s^2+7s+10 Δ1(s)=s2+7s+10
设降维观测器矩阵为 L = [ l 1 l 2 ] L=\begin{bmatrix} l_1 \\ l_2 \end{bmatrix} L=[l1l2],则
Δ ( s ) = det ⁡ [ s I − ( A ˉ 22 + L A ˉ 12 ) ] = s 2 − ( 1 + 2 l 2 ) s − 2 ( 3 − 2 l 1 ) \begin{aligned} \Delta(s)&=\det[sI-(\bar{A}_{22}+L\bar{A}_{12})] \\ &=s^2-(1+2l_2)s-2(3-2l_1) \\ \end{aligned} Δ(s)=det[sI(Aˉ22+LAˉ12)]=s2(1+2l2)s2(32l1)
比较两式可得
{ l 1 = 4 l 2 = − 4 \left\{\begin{array}{l} l_1=4 \\ l_2=-4 \end{array}\right. {l1=4l2=4
降维观测器为
z ˙ = [ 0 11 2 − 7 ] + [ 44 − 35 ] y + [ 10 − 8 ] u x ^ = Q x ˉ ˙ = Q 2 z + ( Q 1 − Q 2 L ) y = [ 1 0 0 1 0 0 ] z + [ − 5 4 1 ] y \dot{z}= \begin{bmatrix} 0 & 11 \\ 2 & -7 \end{bmatrix} + \begin{bmatrix} 44 \\ -35 \end{bmatrix} y + \begin{bmatrix} 10 \\ -8 \end{bmatrix} u \\ \hat{x}= Q\dot{\bar{x}}=Q_2z+(Q_1-Q_2L)y= \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} z + \begin{bmatrix} -5 \\ 4 \\ 1 \end{bmatrix} y z˙=[02117]+[4435]y+[108]ux^=Qxˉ˙=Q2z+(Q1Q2L)y=100010z+541y

  • 5
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值