目录
前言
- 2020年的CVPR,还热乎。
摘要
- 最近,大量的研究被提出来解决UDA问题,其目的是为未标记的目标域学习可转移模型。其中,最佳传输是对齐源域和目标域表示的一种有前途的度量。然而,大多数基于最优传输的现有工作忽略了域内结构,仅实现了粗略的成对匹配。分布在聚类边缘附近或远离其对应类中心的目标样本很容易被从源域学习的决策边界误分类(昨天我也想到了这个切入角度,今天就看到了相关论文。。。)。本文提出了用于无监督域自适应的可靠加权最优传输,包括新的收缩子空间可靠性(Shrinking Subspace Reliability,SSR)和加权最优传输策略。具体来说,SSR利用空间原型信息和域内结构来动态测量跨域的样本级域差异。此外,利用基于SSR的加权最优传输策略实现精确的成对最优传输过程,减少了目标域决策边界附近样本带来的负迁移。RWOT还配备了判别质心聚类开发策略来学习迁移特征。全面的评估表明,在标准域自适应基准上,RWOT优于现有的最先进的方法。
1. Introduction
- 深度学习最近在大规模标记数据集的帮助下&#