最优传输论文(二十四):Reliable Weighted Optimal Transport for Unsupervised Domain Adaptation论文原理

本文提出了一种可靠加权最优传输(RWOT)方法,针对无监督域自适应问题。该方法利用收缩子空间可靠性(SSR)度量跨域样本差异,并通过加权最优运输策略实现精确匹配,减少负迁移。SSR结合空间原型信息和域内结构,而加权最优运输策略利用SSR动态调整匹配权重。实验表明,RWOT在多种域自适应任务上优于现有先进方法。
摘要由CSDN通过智能技术生成

前言

  • 2020年的CVPR,还热乎。

摘要

  • 最近,大量的研究被提出来解决UDA问题,其目的是为未标记的目标域学习可转移模型。其中,最佳传输是对齐源域和目标域表示的一种有前途的度量。然而,大多数基于最优传输的现有工作忽略了域内结构,仅实现了粗略的成对匹配分布在聚类边缘附近或远离其对应类中心的目标样本很容易被从源域学习的决策边界误分类(昨天我也想到了这个切入角度,今天就看到了相关论文。。。)。本文提出了用于无监督域自适应的可靠加权最优传输,包括新的收缩子空间可靠性(Shrinking Subspace Reliability,SSR)和加权最优传输策略。具体来说,SSR利用空间原型信息和域内结构来动态测量跨域的样本级域差异。此外,利用基于SSR的加权最优传输策略实现精确的成对最优传输过程,减少了目标域决策边界附近样本带来的负迁移。RWOT还配备了判别质心聚类开发策略来学习迁移特征。全面的评估表明,在标准域自适应基准上,RWOT优于现有的最先进的方法。

1. Introduction

  • 深度学习最近在大规模标记数据集的帮助下&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CtrlZ1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值