用于卷积神经网络的注意力机制(Attention)----CBAM: Convolutional Block Attention Module

用于卷积神经网络的注意力机制(Attention)----CBAM: Convolutional Block Attention Module

主要思想:

对于一个中间层的feature map:, CBAM将会顺序推理出1维的channel attention map 以及2维的spatial attention map, 整个过程如下所示:
在这里插入图片描述
其中在这里插入图片描述为element-wise multiplication,首先将channel attention map与输入的feature map相乘得到F’,之后计算F’的spatial attention map,并将两者相乘得到最终的输出F’’。下图为CBAM的示意图:
在这里插入图片描述

Channel attention module

feature map 的每个channel都被视为一个feature detector,channel attention主要关注于输入图片中什么(what)是有意义的。为了高效地计算channel attention,论文使用最大池化和平均池化对feature map在空间维度上进行压缩,得到两个不同的空间背景描述:和。使用由MLP组成的共享网络对这两个不同的空间背景描述进行计算得到channel attention map:。计算过程如下:
在这里插入图片描述
在这里插入图片描述
其中,在这里插入图片描述后使用了Relu作为激活函数。

通道注意力机制:


```python
class ChannelAttention(nn.Module):
	def __init__(self, in_planes, ratio=16):
		super(ChannelAttention, self).__init__()
		self.avg_pool = nn.AdaptiveAvgPool2d(1)
		self.max_pool = nn.AdaptiveMaxPool2d(1)

		self.fc1 = nn.Conv2d(in_planes, in_planes // 16, 1, bias=False)
		self.relu1 = nn.ReLU()
		self.fc2 = nn.Conv2d(in_planes // 16, in_planes, 1, bias=False)
		self.sigmoid = nn.Sigmoid()

	def forward(self, x):
		avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
		max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
		out = avg_out + max_out
		return self.sigmoid(out)

在这里插入图片描述
在这里插入图片描述



# **空间注意力机制**

```python
class SpatialAttention(nn.Module):
	def __init__(self, kernel_size=7):
		super(SpatialAttention, self).__init__()

		assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
		padding = 3 if kernel_size == 7 else 1

		self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
		self.sigmoid = nn.Sigmoid()

	def forward(self, x):
		avg_out = torch.mean(x, dim=1, keepdim=True)
		max_out, _ = torch.max(x, dim=1, keepdim=True)
		x = torch.cat([avg_out, max_out], dim=1)
		x = self.conv1(x)
		return self.sigmoid(x)

感谢:https://www.jianshu.com/p/4fac94eaca91
https://zhuanlan.zhihu.com/p/99261200?from=singlemessage

  • 3
    点赞
  • 41
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: CBAM卷积块注意力模块的缩写,是一种用于交替堆叠到深度卷积神经网络(CNNs)中的模块。它包含两个子模块:通道注意力模块和空间注意力模块。通道注意力模块用来对每个通道进行加权,确定哪些通道最重要。空间注意力模块在每个通道中对所有空间位置进行加权,可以捕捉不同位置的重要性,从而更好地定位物体。 CBAM的优点在于,它能够提高CNNs的性能,减少了过度拟合的情况。CBAM结构的输入任意大小、任意通道数、任意深度,因此可以适用于各种计算机视觉任务,包括图像分类,物体检测和语义分割等。 总之,CBAM是一种具有高灵活性和高性能的卷积块注意力模块,能够极大地增强CNNs的表达能力,提高计算机视觉任务的准确性。 ### 回答2: CBAMConvolutional Block Attention Module),是一种用于图像分类的Attention模块,它主要是用于增强卷积神经网络(CNN)的特征表达能力,使得CNN能够更好地区分不同种类的图像。 CBAM结构由两部分组成,分别是CBAM-Channel和CBAM-Spatial。在CBAM-Channel中,它通过引入注意力机制,对每个通道的特征进行加权求和,并且使用全局平均池化操作,计算其重要性参数,进而对特征进行修正,从而提升模型的表达能力。CBAM-Spatial则通过空间注意力机制对图像中的区域进行注意力分配权重,进一步优化模型的性能。 CBAM在图像分类方面的性能表现非常卓越。实验证明,在对比原始ResNet和ResNeXt网络,以及加入CBAM的ResNet和ResNext网络进行图像分类时,加入CBAM的ResNet和ResNeXt网络具有更强的表达能力和更高的分类准确性,同时,它在训练过程中的收敛速度也有所提升。 总的来说,CBAM是一种非常有效的图像分类模块,利用注意力机制对CNN的特征进行增强,为图像分类任务提供了更好的性能表现。随着人工智能的迅速发展,CBAM在图像识别、物体检测等领域将具有广阔的应用前景。 ### 回答3: CBAM卷积块注意力模块的缩写,它是一种用于图像分类和目标检测的神经网络模型。CBAM模块通过将通道和空间注意力机制组合在一起,从而有效地提高了模型的性能。 CBAM模块分为两个部分:通道注意力机制和空间注意力机制。通道注意力机制是针对图像特征中的通道信息进行关注,它可以基于每个通道的特征图来计算权重,然后对于每个通道进行信息的调整和加权。这样,在网络中的每个层次上都能更好地利用有用的通道信息,减少无用信息对网络性能的影响。 空间注意力机制是针对图像特征中的空间信息进行关注。它能够自适应地计算每个像素点的权重,然后对于每个像素点进行信息的调整和加权。这样,网络中的每个空间位置都能更好地利用有用的空间信息,提高目标检测和分类的准确率。 通过组合这两种注意力机制CBAM模块能够区分有用和无用的特征,从而在图像分类和目标检测任务中取得更好的性能。CBAM模块通常被用在深度卷积神经网络中,例如ResNet以及MobileNet等,以提高整个网络中的特征提取能力和分类性能。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值