信号一二三章

总目录

信号与系统公式汇总

按照吴大正的教材的顺序,仅仅是基础知识的提炼,具体定义见书

第一章 信号与系统

信号

连续时间信号和离散时间信号

连续时间信号

在连续时间范围内( − ∞ &lt; t &lt; + ∞ -\infty &lt;t&lt;+\infty <t<+)有定义的信号成为连续时间信号,简称连续信号。连续是指函数的定义域是连续的,值域不一定连续。
在这里插入图片描述

离散时间信号

仅在一些离散的瞬间才有定义的信号成为离散时间信号
在这里插入图片描述

周期信号和非周期信号

周期信号

周期信号是定义在( − ∞ , + ∞ -\infty,+\infty +)区间,每隔一定时间T(或整数N),按相同规律重复变化的信号。
连续周期信号可表示为:f(t)=f(t+mT),m=0, ± \pm ± 1, ± \pm ± 2, … \ldots
离散周期信号可表示为:f(k)=f(k+mN),m=0, ± \pm ± 1, ± \pm ± 2, … \ldots
满足以上关系的最小T(或N)值称为该信号的重复周期,简称周期

对于正弦序列(或余弦序列)
f(k)=sin( β \beta βk)=sin( β \beta βk+2m π \pi πk)=sin( β ( \beta( β(k+m 2 π β \frac{ 2 \pi }{\beta} β2π))=sin( β ( \beta( β(k+mN)),m=0, ± \pm ± 1, ± \pm ± 2, … \ldots
其中 β \beta β是正弦序列的角频率,仅当 2 π β \frac{ 2 \pi }{\beta} β2π为整数时,正弦序列才具有周期N= 2 π β \frac{ 2 \pi }{\beta} β2π
(注意,信号是离散的,若为两个正余弦信号叠加,则周期为两个信号周期的最小公倍数)

不满足周期条件即为非周期信号

实信号和复信号

实信号

物理可实现的信号常常是时间t(或k)的实函数(或序列),其在各时刻的函数(或序列)值为实数,例如单边指数信号,正弦信号(正弦与余弦信号二者相为差 π 2 \frac{ \pi }{2} 2π统称为正弦信号),为实信号

复信号

函数值为复数的信号称为复信号,最常用的是复指数信号
连续信号的复指数信号
f(t)= e s t e^{st} est − ∞ &lt; t &lt; + ∞ -\infty &lt;t&lt;+\infty <t<+
式中复变量s= σ \sigma σ+j ω \omega ω σ \sigma σ是s的实部,记做Re[s], ω \omega ω是s的虚部,记做Im[s]。
根据欧拉公式 e j x e^{jx} ejx=cosx+jsinx,上式可展开为f(t)= e ( σ + j ω ) t e^{(\sigma+j\omega)t} e(σ+jω)t= e σ t e^{\sigma t} eσtcos( ω \omega ωt)+j e σ t e^{\sigma t} eσtsin( ω \omega ωt)
可以得到Re[f(t)]= e σ t e^{\sigma t} eσtcos( ω \omega ωt),Im[s]= e σ t e^{\sigma t} eσtsin( ω \omega ωt)。
由图可见, σ \sigma σ>0是增幅震荡, σ \sigma σ<0是减幅震荡, σ \sigma σ=0是等幅震荡
ω \omega ω=0,就成了实指数信号 e σ t e^{\sigma t} eσt
ω \omega ω= σ \sigma σ=0,就成了直流信号
复指数信号的重要特性之一是它对时间的导数和积分仍然是复指数信号
在这里插入图片描述
离散复指数信号和连续复指数信号相似,见书

关于复信号,这篇文章不错,【数字信号处理】信号处理中为什么要用复信号
摘要
通信一般具有载波,早期通信的载波为正弦波,通过调制传输信息,发射和接收的都是实信号,接收后要把调制信号从载波里提取出来,通常的做法是将载频变频到零(通称为零中频)。我们知道,通常的变频相当于将载频下移,早期的调幅接收机将下移到较低的中频,其目的是方便选择信号和放大,然后通过幅度检波(调幅信号的载波只有幅度受调制)得到所需的低频信号,现代通信信号有各种调制方式,为便于处理,需要将频带内的信号的谱结构原封不动的下移到零中频(统称为基带信号)。很显然,将接收到的实信号直接变到零中频是不行的,因为实信号存在共轭对称的双边谱,随着载频的下移,正、负相互接近,到中频小于信号频带一半时,两部分谱就会发生混叠,当中频为零时混叠最严重,使原信号无法恢复,这时应在变频中注意避免正、负谱分量的混叠,正确的获取基带信号。

能量信号和功率信号

为了知道信号能量或功率的特性,常常研究信号(电压或电流)在单位电阻上的能量或功率,亦称归一化能量或功率。

信号f(t)在单位电阻上的瞬时功率为 ∣ f ( t ) ∣ 2 |f(t)|^2 f(t)2,在区间 − a &lt; t &lt; + a -a &lt;t&lt;+a a<t<+a的能量为
∫ − a a ∣ f ( t ) ∣ 2 &ThinSpace; d t \int_ {-a}^{a} {|f(t)|^2} \,{\rm d}t aaf(t)2dt
在区间 − a &lt; t &lt; + a -a &lt;t&lt;+a a<t<+a的平均能量为
1 2 a ∫ − a a ∣ f ( t ) ∣ 2 &ThinSpace; d t \frac{ 1}{2a}\int_ {-a}^{a} {|f(t)|^2} \,{\rm d}t 2a1aaf(t)2dt
信号能量定义为在区间( − ∞ , ∞ -\infty,\infty ,)中信号f(t)的能量,用字母E表示,即
E = lim ⁡ a → ∞ ∫ − a a ∣ f ( t ) ∣ 2 &ThinSpace; d t E=\lim\limits_{a \rightarrow \infty}\int_ {-a}^{a} {|f(t)|^2} \,{\rm d}t E=alimaaf(t)2dt
信号功率定义为在区间( − ∞ , ∞ -\infty,\infty ,)中信号f(t)的平均功率,用字母P表示,即
P = lim ⁡ a → ∞ 1 2 a ∫ − a a ∣ f ( t ) ∣ 2 &ThinSpace; d t P=\lim\limits_{a \rightarrow \infty} \frac{1}{2a}\int_ {-a}^{a} {|f(t)|^2} \,{\rm d}t P=alim2a1aaf(t)2dt
离散信号功率和能量表示
离散信号f(k)的能量:
E = lim ⁡ N → ∞ ∑ k = − N N ∣ f ( t ) ∣ 2 E=\lim\limits_{N \rightarrow \infty}\sum_{k=-N}^N {|f(t)|^2} E=Nlimk=NNf(t)2
离散信号f(k)的功率:
P = lim ⁡ N → ∞ 1 2 N + 1 ∑ k = − N N ∣ f ( t ) ∣ 2 P=\lim\limits_{N \rightarrow \infty}\frac{1}{2N+1}\sum_{k=-N}^N {|f(t)|^2} P=Nlim2N+11k=NNf(t)2

能量信号用于平均功率为零的信号,如单个脉冲信号
功率用于能量信号为无限的信号,如直流信号,周期信号,阶跃信号
一个信号不可能既是能量信号又是功率信号,个别信号既不是能量信号也不是功率信号,如 e − t e^{-t} et

信号的基本运算

加法和乘法

信号f1(.)与f2(.)之和(瞬间和)是指同一瞬时两信号之值对应相加所构成的“和信号”
f 1 ( . ) = f 1 ( . ) + f 2 ( . ) f1(.)=f1(.)+f2(.) f1(.)=f1(.)+f2(.)
调音台就是信号相加的一个例子
信号f1(.)与f2(.)之积是指同一瞬时两信号之值对应相乘所构成的“积信号”,即
f 1 ( . ) = f 1 ( . ) f 2 ( . ) f1(.)=f1(.)f2(.) f1(.)=f1(.)f2(.)
收音机的调幅信号是将音频信号f1(t)加载到被称为载波的正弦信号f2(t)上
调制:调幅(AM)与调频(FM)
调幅”就是调制幅度,高频信号的幅度随着音频信号幅度的改变而改变,当音频信号的幅度高时高频信号的幅度也跟着高,反之跟着变低,形成音频信号的幅度包络,但高频信号的频率没有变;
调频”就是调制频率,高频信号的频率随着音频信号幅度的改变而改变,当音频信号的幅度高时高频信号的频率也跟着高,反之跟着变低,但高频信号的幅度没有变。

反转和平移

反转

将信号f(t)[或f(k)]中的自变量t或k换为-t或-k,其几何含义是将信号f(.)以纵坐标为轴反转(或称反折)
问:反褶是反转吗?是,反褶就是反转
matlab反转
(matlab本身就是离散数据处理,假设x取无穷多个样,那么就是连续信号了,所以这张图同时代表了离散和连续信号,嘻嘻)
问:卷积(后面内容)为什么要反转?这里提供一个答案,后面重点讨论

平移

平移又称移位。对于连续信号f(t),若有常数t0>0,延时信号f(t-t0)是将原信号沿t轴正方向平移t0时间,而f(t+t0)是将原信号沿t轴负方向平移t0时间。(左正右负)
matlab平移

尺度变换(横坐标展缩)

将可用变量at替换掉原信号的自变量t得到f(at)
推而广之,若a> 0
则 (1) 当0< a <1 波形沿t轴被扩展;
反之 (2当 a> 1时,波形沿t轴被压缩。尺度变换

要强调的是,上述运算都意味着函数自变量t的某种变化,函数值(波形的幅度)不会因之而变化。如果给原信号f(t)乘以一个常数a(a为实常数),则信号af(t)相对于f(t)将发生幅度的变化,我们也可以称这种信号运算为“幅度的缩(小)放(大)”

*多种变换组合(重要)
  1. 已知f(t),求f(at-t)。
    那么获得信号f(at-t)的过程可能包含了所有3种运算——平移、反折以及尺度变换。这里给出一种最稳妥的运算步骤:简单地说,就是平移先行,反折和尺度变换后进行(二者先后顺序无所谓)
    举例说明,已知f(t)波形如图,求f(1-2t)。
    在这里插入图片描述

  2. 已知f(at-t),求f(t)。
    合适的做法是:
    先分解由f(t)得到f(at-t)的步骤(平移先行);然后对已知的f(at - t)波形逆步骤做逆运算。
    例如,上例变成已知f(1-2t),求解f(t)的步骤应该是:
    先尺度扩展为2倍(尺度压缩为1/2的逆运算);
    再反转(反转的逆运算还是反转);
    最后右移1(左移1的逆运算)。

阶跃信号和冲激函数

阶跃函数和冲激函数都属于奇异函数,区别于普通函数。
阶跃函数
ε ( t ) = { 0 , t &lt; 0 1 2 , t = 0 1 , t &gt; 0 \varepsilon(t) =\begin{cases} {0 , t&lt;0}\\{\frac{1}{2} , t=0} \\{1 , t&gt;0} \end{cases} ε(t)=0,t<021,t=01,t>0
冲激函数
(具体定义见书)
狄拉克定义:
{ δ ( t ) = 0 , t ≠ 0 ∫ − ∞ ∞ δ ( t ) d t = 1 \begin{cases} {\delta(t)=0,t\neq 0}\\{\int_{-\infty}^{\infty}\delta(t)dt=1}\end{cases} {δ(t)=0,t̸=0δ(t)dt=1
阶跃函数和冲激函数关系
δ ( t ) = d ε ( t ) d t \delta(t)=\frac{d\varepsilon(t)}{dt} δ(t)=dtdε(t)
ε ( t ) = ∫ − ∞ t δ ( x ) d x \varepsilon(t)=\int_{-\infty}^t\delta(x)dx ε(t)=tδ(x)dx

其他 ∫ − ∞ t ε ( t ) d t = { ∫ − ∞ 0 0 d t + ∫ 0 t 1 d t = 0 + t = t , t &gt; 0 ∫ − ∞ t 0 d t = 0 , t &lt; 0 \int_{-\infty}^t\varepsilon(t)dt=\begin{cases} {\int_{-\infty}^00dt+\int_{0}^t1dt=0+t=t,t&gt;0}\\{\int_{-\infty}^t0dt=0,t&lt;0} \end{cases} tε(t)dt={00dt+0t1dt=0+t=t,t>0t0dt=0,t<0

= t ε ( t ) =t\varepsilon(t) =tε(t)

∫ − ∞ ∞ δ ′ ( t ) d t = 0 ( 一 阶 导 数 δ ′ ( t ) 的 面 积 等 于 0 ) \int_{-\infty}^{\infty}\delta\prime(t)dt=0 (一阶导数\delta\prime(t)的面积等于0 ) δ(t)dt=0(δ(t)0)
∫ − ∞ ∞ δ ( t ) d t = 1 \int_{-\infty}^{\infty}\delta(t)dt=1 δ(t)dt=1

广义函数定义略

冲激函数的性质

1.与普通函数的乘积 { f ( t ) δ ( t ) = f ( 0 ) δ ( t ) f ( t ) δ ′ ( t ) = f ( 0 ) δ ′ ( t ) − f ′ ( 0 ) δ ( t ) \begin{cases} {f(t)\delta(t)=f(0)\delta(t)}\\{f(t)\delta\prime(t)=f(0)\delta\prime(t)-f\prime(0)\delta(t)}\end{cases} {f(t)δ(t)=f(0)δ(t)f(t)δ(t)=f(0)δ(t)f(0)δ(t)
{ ∫ − ∞ ∞ f ( t ) δ ( t ) d t = ∫ − ∞ ∞ f ( 0 ) δ ( t ) d t = f ( 0 ) ∫ − ∞ ∞ f ( t ) δ ′ ( t ) d t = ∫ − ∞ ∞ [ f ( 0 ) δ ′ ( t ) − f ′ ( 0 ) δ ( t ) ] d t = − f ′ ( 0 ) \begin{cases}{\int_{-\infty}^{\infty}f(t)\delta(t)dt=\int_{-\infty}^{\infty}f(0)\delta(t)dt=f(0)}\\{\int_{-\infty}^{\infty}f(t)\delta\prime(t)dt=\int_{-\infty}^{\infty}[f(0)\delta\prime(t)-f\prime(0)\delta(t)]dt=-f\prime(0)}\end{cases} {f(t)δ(t)dt=f(0)δ(t)dt=f(0)f(t)δ(t)dt=[f(0)δ(t)f(0)δ(t)]dt=f(0)
广义函数之间的乘积如 ε ( t ) δ ( t ) , δ ( t ) δ ( t ) , δ ( t ) δ ′ ( t ) \varepsilon(t)\delta(t),\delta(t)\delta(t),\delta(t)\delta\prime(t) ε(t)δ(t),δ(t)δ(t),δ(t)δ(t)没有定义

2.移位
∫ − ∞ ∞ δ ( t − t 1 ) φ ( t ) d t = ∫ − ∞ ∞ δ ( x ) φ ( x + t 1 ) d x = φ ( t 1 ) \int_{-\infty}^{\infty}\delta(t-t1)\varphi(t)dt=\int_{-\infty}^{\infty}\delta(x)\varphi(x+t1)dx=\varphi(t1) δ(tt1)φ(t)dt=δ(x)φ(x+t1)dx=φ(t1)
∫ − ∞ ∞ δ ′ ( t − t 1 ) φ ( t ) d t = ∫ − ∞ ∞ δ ′ ( x ) φ ( x + t 1 ) d x = − φ ′ ( t 1 ) \int_{-\infty}^{\infty}\delta\prime(t-t1)\varphi(t)dt=\int_{-\infty}^{\infty}\delta\prime(x)\varphi(x+t1)dx=-\varphi\prime(t1) δ(tt1)φ(t)dt=δ(x)φ(x+t1)dx=φ(t1)

3.尺度变换
δ ( a t ) = 1 ∣ a ∣ δ ( t ) \delta(at)=\frac{1}{|a|}\delta(t) δ(at)=a1δ(t)
δ 1 ( a t ) = 1 ∣ a ∣ ⋅ 1 a δ 1 ( t ) \delta^{{1}}(at)=\frac{1}{|a|}\cdot\frac{1}{a}\delta^{{1}}(t) δ1(at)=a1a1δ1(t)
δ n ( a t ) = 1 ∣ a ∣ ⋅ 1 a n δ n ( t ) \delta^{{n}}(at)=\frac{1}{|a|}\cdot\frac{1}{a^n}\delta^{{n}}(t) δn(at)=a1an1δn(t)

4.奇偶性
由上式代入a=-1
δ n ( − t ) = ( − 1 ) n δ n ( t ) \delta^{{n}}(-t)=(-1)^n\delta^{{n}}(t) δn(t)=(1)nδn(t)
得到
{ δ n ( − t ) = δ n ( t ) , n 为 偶 数 δ n ( − t ) = − δ n ( t ) , n 为 奇 数 \begin{cases} {\delta^{{n}}(-t)=\delta^{{n}}(t),n为偶数}\\ {\delta^{{n}}(-t)=-\delta^{{n}}(t),n为奇数} \end{cases} {δn(t)=δn(t)nδn(t)=δn(t)n

5.复合函数形式的冲激函数
ti为单根
δ [ f ( t ) ] = δ [ f ′ ( t i ) ( t − t i ) ] = 1 ∣ f ′ ( t i ) ∣ δ ( t − t i ) \delta[f(t)]= \delta[f\prime(ti)(t-ti)]=\frac{1}{|f\prime(ti)|} \delta(t-ti) δ[f(t)]=δ[f(ti)(tti)]=f(ti)1δ(tti)
δ [ f ( t ) ] = δ [ f ′ ( t i ) ( t − t i ) ] = ∑ i = 1 n 1 ∣ f ′ ( t i ) ∣ δ ( t − t i ) \delta[f(t)]= \delta[f\prime(ti)(t-ti)]=\sum_{i=1}^n\frac{1}{|f\prime(ti)|} \delta(t-ti) δ[f(t)]=δ[f(ti)(tti)]=i=1nf(ti)1δ(tti)

系统的描述

描述连续系统的数学模型是微分方程,描述离散系统的数学模型是差分方程。
系统框图:
积分器
y ( t ) = ∫ − ∞ t f ( x ) d x y(t)=\int_{-\infty}^tf(x)dx y(t)=tf(x)dx
加法器
f 1 ( ⋅ ) + f 2 ( ⋅ ) f1(\cdot)+f2(\cdot) f1()+f2()
延迟单元
y ( k ) = f ( k − 1 ) y(k)=f(k-1) y(k)=f(k1)
数乘器
y ( ⋅ ) = a f ( ⋅ ) y(\cdot)=af(\cdot) y()=af()
延时器(延时T)
y ( t ) = f ( t − T ) y(t)=f(t-T) y(t)=f(tT)

系统的特性和分析方法

1.线性
(奥本海姆教材)
线性系统(连续时间或离散时间)具有一个重要的性质就是叠加性质,如果某一个输入是由几个信号的加权和组成的话,那么输出也就是系统对这组信号中每一个响应的加权和
更准确的说,令y1(t)是一个连续时间系统对x1(t)的响应,而y2(t)是对应于x(t)的输出,那么一个线性系统就应该有:

  1. y1(t)+y2(t)是对x1(t)+x2(t)的响应
  2. ay1(t)是对x1(t)的响应,此处a为任意复常数。

上面第一个性质为可加性,第二个性质为比例性齐次性

2.时不变性
从概念上来讲,若系统的行为不随时间而变,该系统就是时不变的。
时不变可以以简单的用已经介绍过的信号与系统的语言来描述。这就是,如果在输入信号上有一个时移,而在输出信号中产生同样的时移,那么这个系统就是时不变的;也就是说,若y[n]是一个离散时间时不变系统在输入为x[n]时的输出,那么当输入为x[n-n0]时输出就为y[n-n0]。在连续情况下,y[t]是相应于输入为x(t)时的输出,一个时不变系统几一定有当输入为x(t-t0)时,输出为y(t-t0)的结果。

3.因果性
如果一个系统在任意时刻的输出只决定于现在的输入及过去的输入,该系统就称为因果系统。这样的系统往往也称之为不可预测的系统,因为系统的输出无法预测未来的输入值。因此,对一个因果系统若两个输入直到某一个时间t0或n0以前都是相同的话,那么在这同一时间以前相应的输出也一定相等。

4.稳定性
稳定性是一个重要的系统性质。直观上看一个稳定系统在小的输入下是不会发散的。

第二章 连续系统的时域分析

连续信号分析是微分方程,离散信号分析是差分方程

LTI连续系统的响应

微分方程的解

!!!复习高数微分方程解法
微分方程的解=齐次解+特解
齐次解解法:将右侧置0,由特征方程的特征根判断齐次解
在这里插入图片描述
特解:由右侧的形式查出特解形式,代入微分方程
求出特解

y( 0 + 0_+ 0+)和y( 0 − 0_- 0

输入一般在t=0时接入系统,那么方程的解也适用于t>0(或t> t 0 t_0 t0),初始值通常是 0 − 0_- 0值,所以需要求出 0 + 0_+ 0+

求解方法:例如 y ′ ′ ( t ) + 2 y ′ ( t ) + y ( t ) = f ′ ′ ( t ) + 2 f ( t ) y{\prime\prime}(t)+2y{\prime}(t)+y(t)=f{\prime\prime}(t)+2f(t) y(t)+2y(t)+y(t)=f(t)+2f(t)
已 知 y ( 0 − ) = 1 , y ′ ( 0 − ) = − 1 , f ( t ) = δ ( t ) , 求 y ( 0 + ) 和 y ′ ( 0 + ) 已知y(0_-)=1,y{\prime}(0_-)=-1,f(t)=\delta(t),求y(0_+)和y{\prime}(0_+) y(0)=1,y(0)=1,f(t)=δ(t),y(0+)y(0+)
1. 将 f ( t ) = δ ( t ) 1.将f(t)=\delta(t) 1.f(t)=δ(t)代入原微分方程
y ′ ′ ( t ) + 2 y ′ ( t ) + y ( t ) = δ ′ ′ ( t ) + 2 δ ( t ) y{\prime\prime}(t)+2y{\prime}(t)+y(t)=\delta{\prime\prime}(t)+2\delta(t) y(t)+2y(t)+y(t)=δ(t)+2δ(t)
2.先确定最高阶导数的形式,由右侧最高阶确定
设出变量a,b,c…积分后为连续函数归为一个函数 r 0 ( t ) r_0(t) r0(t)(因为积分后为连续函数的函数积分在 0 − 0_- 0 0 + 0_+ 0+积分为0,所以没有意义)
y ′ ′ ( t ) = a δ ′ ′ ( t ) + b δ ′ ( t ) + c δ ( t ) + r 0 ( t ) y{\prime\prime}(t)=a\delta{\prime\prime}(t)+b\delta{\prime}(t)+c\delta(t)+r_0(t) y(t)=aδ(t)+bδ(t)+cδ(t)+r0(t) (1)
3.进行积分,同样,积分后为连续函数归为一个函数 r 1 ( t ) r_1(t) r1(t)
y ′ ( t ) = a δ ′ ( t ) + b δ ( t ) + r 1 ( t ) y{\prime}(t)=a\delta{\prime}(t)+b\delta{}(t)+r_1(t) y(t)=aδ(t)+bδ(t)+r1(t) (2)
4.继续积分,积分后为连续函数归为一个函数 r 2 ( t ) r_2(t) r2(t)
y ( t ) = a δ ( t ) + r 2 ( t ) y{}(t)=a\delta{}(t)+r_2(t) y(t)=aδ(t)+r2(t) (3)
5.代入原微分方程,将变量列出方程组
{ a = 1 2 a + b = 0 a + 2 b + c = 2 \begin{cases} {a=1}\\{2a+b=0}\\{a+2b+c=2} \end{cases} a=12a+b=0a+2b+c=2
解得方程a=1,b=-2,c=5
对(1)式在 0 − 0_- 0 0 + 0_+ 0+积分得到 y ′ ( 0 + y{\prime}(0_+ y(0+)=5-1=4
对(2)式在 0 − 0_- 0 0 + 0_+ 0+积分得到 y ( 0 + y{}(0_+ y(0+)=-2+1=-1

零输入响应和零状态响应
零输入响应

初 始 条 件 y z i : y ( 0 − ) = 常 数 , y ′ ( 0 − ) = 常 数 , f ( t ) = 0 初始条件y_{zi}:y(0_-)=常数,y{\prime}(0_-)=常数,f(t)=0 yziy(0)=y(0)=f(t)=0
解法:由 y ( 0 − ) = y ( 0 + ) y(0_-)=y(0_+) y(0)=y(0+) y ′ ( 0 − ) = y ′ ( 0 + ) y{\prime}(0_-)=y{\prime}(0_+) y(0)=y(0+),f(t)=0得到初始条件,解微分方程,由初始条件得齐次解即零输入响应

零状态响应

初 始 条 件 y z s : y ( 0 − ) = y ′ ( 0 − ) = 0 初始条件y_{zs}:y(0_-)=y{\prime}(0_-)=0 yzsy(0)=y(0)=0

{ f ( t ) = ε ( t ) = &gt; g ( t ) 阶 跃 响 应 f ( t ) = δ ( t ) = &gt; h ( t ) 冲 激 响 应 \begin{cases} {f(t)=\varepsilon(t) =&gt;g(t)阶跃响应}\\{f(t)=\delta(t) =&gt;h(t)冲激响应}\end{cases} {f(t)=ε(t)=>g(t)f(t)=δ(t)=>h(t)

解法:先由上面方法算出 y ( 0 + y{}(0_+ y(0+)和 y ′ ( 0 + y{\prime}(0_+ y(0+),然后将右侧置0,由特征方程求出齐次解,如果激励有 ε ( t ) \varepsilon(t) ε(t)则特解为常数,如果激励没有 ε ( t ) \varepsilon(t) ε(t)则无特解,将特解代入原方程,得出结果

冲激响应和阶跃响应

卷积积分

卷积公式
f ( t ) = f 1 ( t ) ∗ f 2 ( t ) = ∫ − ∞ ∞ f 1 ( τ ) f 2 ( t − τ ) d τ f(t)=f_1(t)\ast f_2(t) = \int_{-\infty}^{\infty} f_1(\tau)f_2(t-\tau )d\tau f(t)=f1(t)f2(t)=f1(τ)f2(tτ)dτ
卷积其实就是同权相加

那么问题来了,为什么其中一个信号要反转?
其实卷积单从数学角度上就是个运算,就是个技巧,比如做三位数的乘法,或者多项式的乘法,都可以用卷积轻松算出,摆脱数学的角度,从多项式乘法运算中可以看到,卷积能将次方一致的相加,放到傅里叶变换中就是频率一致的相加,所以时域的相乘就是频域的卷积
终极解释:
卷积的表达式为y(t) =∫abx(t-τ)h(τ)dτ。我们的教科书中总是这样解说的:在每个时间点t,将x(τ)翻转为x(-τ),再平移为x(t-τ),与h(τ)乘积的结果,求面积,就得到卷积的结果。这个解说是没错的,并且因为x(τ)要被翻转,成为“卷积”这个称呼的来源。但问题是,这个解释符合物理事实吗?或者说在物理上的一个卷积过程,要求一个物理量在时间上(或空间上)必须被翻转吗?这显然不是事实!现在的问题出在哪里?问题出在刚才的解说仅仅是一个数学解说。另一种解说就没有这样的困难:将x(t)平移一个时间量τ成为x(t-τ),乘在τ处的函数值h(τ),取遍定义h(τ)的所有τ,将乘积累积起来,就得到卷积的结果。后一种解释其实是最老的解释:叠加原理。正是按照这种解释,可以构造出用物理硬件实施卷积计算的卷积器。“翻转”这个概念应该说造成了某些负面后果。例如,考虑两个外形不同的多边形(你不妨在纸上画一个任意的三角形和一个任意的四边形,假定图形内数值是1,图形外是0),这两个图形卷积后,结果是什么外形?你可以试图通过上面的两种解释从概念上得到结果。你会发现,从“翻转”解释出发会使你头痛,而从后一种解释得到结果就很直观和容易。不要小看了这里的问题,它联系着某些深入的数学:代数几何、多项式代数和分配函数理论。

卷积积分的性质

交换律
f 1 ( t ) ∗ f 2 ( t ) = f 2 ( t ) ∗ f 1 ( t ) f_1(t)\ast f_2(t)=f_2(t)\ast f_1(t) f1(t)f2(t)=f2(t)f1(t)

分配律
f 1 ( t ) ∗ [ f 2 ( t ) + f 3 ( t ) ] = f 1 ( t ) ∗ f 2 ( t ) + f 1 ( t ) ∗ f 3 ( t ) f_1(t)\ast [f_2(t)+f_3(t)]=f_1(t)\ast f_2(t)+f_1(t)\ast f_3(t) f1(t)[f2(t)+f3(t)]=f1(t)f2(t)+f1(t)f3(t)

结合律
[ f 1 ( t ) ∗ f 2 ( t ) ] ∗ f 3 ( t ) = f 1 ( t ) ∗ [ f 2 ( t ) ∗ f 3 ( t ) ] [f_1(t)\ast f_2(t)]\ast f_3(t)=f_1(t)\ast [f_2(t)\ast f_3(t)] [f1(t)f2(t)]f3(t)=f1(t)[f2(t)f3(t)]

函数和冲激函数的性质

f ( t ) ∗ δ ( t ) = δ ( t ) ∗ f ( t ) = ∫ − ∞ ∞ δ ( τ ) f ( t − τ ) d τ = f ( t ) f(t)\ast \delta(t) = \delta(t)\ast f(t)= \int_{-\infty}^{\infty} \delta(\tau)f(t-\tau )d\tau=f(t) f(t)δ(t)=δ(t)f(t)=δ(τ)f(tτ)dτ=f(t)
f ( t ) ∗ δ ( t ) = δ ( t ) ∗ f ( t ) = f ( t ) f(t)\ast \delta(t)=\delta(t) \ast f(t) =f(t) f(t)δ(t)=δ(t)f(t)=f(t)
f ( t ) ∗ δ ( t − t 1 ) = δ ( t − t 1 ) ∗ f ( t ) = f ( t − t 1 ) f(t)\ast \delta(t-t_1)=\delta(t-t_1) \ast f(t) =f(t-t_1) f(t)δ(tt1)=δ(tt1)f(t)=f(tt1)
δ ( t − t 1 ) ∗ δ ( t − t 2 ) = δ ( t − t 2 ) ∗ δ ( t − t 1 ) = δ ( t − t 1 − t 2 ) \delta(t-t_1)\ast \delta(t-t_2)= \delta(t-t_2)\ast \delta(t-t_1) = \delta(t-t_1-t_2) δ(tt1)δ(tt2)=δ(tt2)δ(tt1)=δ(tt1t2)
f ( t − t 1 ) ∗ δ ( t − t 2 ) = f ( t − t 2 ) ∗ δ ( t − t 1 ) = f ( t − t 1 − t 2 ) f(t-t_1)\ast \delta(t-t_2)=f(t-t_2)\ast \delta(t-t_1) =f(t-t_1-t_2) f(tt1)δ(tt2)=f(tt2)δ(tt1)=f(tt1t2)

第三章 离散系统的时域分析

LTI离散系统的响应

离散信号的分析用差分方程,差分方程可以用迭代法算出

差分方程求解:
先由特征方程求出齐次解,然后再由激励得到特解的形式,代入原微分方程,得到特解,合并为全解,代入初始条件,求出全解

零输入响应

初始条件:y(-1)=常数,y(-2)=常数,f(k)=0
解法:由y(-1)和y(-2)利用迭代法求出y(0)和y(1),再利用上述方法求出解

零状态响应

初始条件:y(-1)=y(-2)=0,f(k)不等于0
解法:由迭代法求得y(0)和y(1),利用上述解法求出解

单位序列和单位序列响应

单位序列和单位阶跃序列

单位序列定义
δ ( k ) = { 1 , k = 0 0 , k ≠ 0 \delta(k)=\begin{cases} {1,k=0}\\{0,k\neq0}\end{cases} δ(k)={1,k=00,k̸=0
平移
δ ( k − i ) = { 1 , k = i 0 , k ≠ i \delta(k-i)=\begin{cases} {1,k=i}\\{0,k\neq i}\end{cases} δ(ki)={1,k=i0,k̸=i

单位阶跃序列定义
ε ( k ) = { 0 , k &lt; 0 1 , k ≥ 0 \varepsilon(k)=\begin{cases} {0,k&lt;0}\\{1,k\geq0}\end{cases} ε(k)={0,k<01,k0
平移
ε ( k − i ) = { 0 , k &lt; i 1 , k ≥ i \varepsilon(k-i)=\begin{cases} {0,k&lt;i}\\{1,k\geq i }\end{cases} ε(ki)={0,k<i1,ki

单位序列和单位阶跃序列的关系
δ ( k ) = △ ε ( k ) = ε ( k ) − ε ( k − 1 ) \delta(k)=\vartriangle \varepsilon(k)=\varepsilon(k)-\varepsilon(k-1) δ(k)=ε(k)=ε(k)ε(k1)
ε ( k ) = ∑ i = − ∞ k δ ( i ) \varepsilon(k)=\sum_{i=-\infty }^{k} \delta(i) ε(k)=i=kδ(i)
ε ( k ) = ∑ j = 0 ∞ δ ( k − j ) \varepsilon(k)=\sum_{j=0}^{\infty } \delta(k-j) ε(k)=j=0δ(kj)

单位序列响应与阶跃响应

卷积和

公式
f ( k ) = f 1 ( k ) ∗ f 2 ( k ) = ∑ i = − ∞ ∞ f 1 ( i ) ∗ f 2 ( k − i ) f(k)=f_1(k)*f_2(k)=\sum_{i=-\infty }^{\infty} f_1(i)*f_2(k-i) f(k)=f1(k)f2(k)=i=f1(i)f2(ki)

卷积和的性质

f 1 ( k ) ∗ f 2 ( k ) = f 2 ( k ) ∗ f 1 ( k ) f_1(k)*f_2(k)=f_2(k)*f_1(k) f1(k)f2(k)=f2(k)f1(k)
f 1 ( k ) ∗ [ f 2 ( k ) + f 3 ( k ) ] = f 1 ( k ) ∗ f 2 ( k ) + f 1 ( k ) ∗ f 3 ( k ) f_1(k)*[f_2(k)+f_3(k)]=f_1(k)*f_2(k)+f_1(k)*f_3(k) f1(k)[f2(k)+f3(k)]=f1(k)f2(k)+f1(k)f3(k)
f 1 ( k ) ∗ [ f 2 ( k ) ∗ f 3 ( k ) ] = [ f 1 ( k ) ∗ f 2 ( k ) ] ∗ f 3 ( k ) f_1(k)*[f_2(k)*f_3(k)]=[f_1(k)*f_2(k)]*f_3(k) f1(k)[f2(k)f3(k)]=[f1(k)f2(k)]f3(k)
f ( k ) ∗ δ ( k ) = δ ( k ) ∗ f ( k ) = ∑ i = − ∞ ∞ δ ( i ) f ( k − i ) = f ( k ) f(k)*\delta(k)=\delta(k)*f(k)=\sum_{i=-\infty}^{\infty} \delta(i)f(k-i)=f(k) f(k)δ(k)=δ(k)f(k)=i=δ(i)f(ki)=f(k)
f ( k ) ∗ δ ( k − k 1 ) = ∑ i = − ∞ ∞ f ( i ) δ ( k − i − k 1 ) f(k)*\delta(k-k_1)=\sum_{i=-\infty}^{\infty} f(i)\delta(k-i-k_1) f(k)δ(kk1)=i=f(i)δ(kik1)
f ( k ) ∗ δ ( k − k 1 ) = δ ( k − k 1 ) ∗ f ( k ) = f ( k − k 1 ) f(k)*\delta(k-k_1)=\delta(k-k_1)*f(k)=f(k-k_1) f(k)δ(kk1)=δ(kk1)f(k)=f(kk1)
f ( k − k 1 ) ∗ δ ( k − k 2 ) = f ( k − k 2 ) ∗ δ ( k − k 1 ) = f ( k − k 1 − k 2 ) f(k-k_1)*\delta(k-k_2) =f(k-k_2)*\delta(k-k_1)=f(k-k_1-k_2) f(kk1)δ(kk2)=f(kk2)δ(kk1)=f(kk1k2)
f ( k ) = f 1 ( k ) ∗ f 2 ( k ) f(k)=f_1(k)*f_2(k) f(k)=f1(k)f2(k),则

f 1 ( k − k 1 ) ∗ f 2 ( k − k 2 ) = f 1 ( k − k 2 ) ∗ f 2 ( k − k 1 ) = f ( k − k 1 − k 2 ) f_1(k-k_1)*f_2(k-k_2)=f_1(k-k_2)*f_2(k-k_1)=f(k-k_1-k_2) f1(kk1)f2(kk2)=f1(kk2)f2(kk1)=f(kk1k2)

反卷积

  • 17
    点赞
  • 83
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值