文章目录
第四章 傅里叶变换和系统的频域分析
信号分解为正交函数
正交函数集
正交定义
如有定义在( t 1 , t 2 t_1,t_2 t1,t2)区间两个函数 φ 1 ( t ) \varphi_1(t) φ1(t)和 φ 2 ( t ) \varphi_2(t) φ2(t),若满足
∫ t 1 t 2 φ 1 ( t ) φ 2 ( t ) d t = 0 \int_{t_1}^{t_2} \varphi_1(t)\varphi_2(t) dt = 0 ∫t1t2φ1(t)φ2(t)dt=0
则称 φ 1 ( t ) \varphi_1(t) φ1(t)和 φ 2 ( t ) \varphi_2(t) φ2(t)在区间内正交。
如有n个函数 φ 1 ( t ) , φ 2 ( t ) , φ 3 ( t ) . . . φ n ( t ) \varphi_1(t),\varphi_2(t),\varphi_3(t)...\varphi_n(t) φ1(t),φ2(t),φ3(t)...φn(t)构成一个函数集,当这些函数在区间( t 1 , t 2 t_1,t_2 t1,t2)内满足:
∫ t 1 t 2 φ i ( t ) φ j ( t ) d t = { 0 , 当 i ≠ j K i ≠ 0 , i = j \int_{t_1}^{t_2} \varphi_i(t)\varphi_j(t) dt =\begin{cases} {0 , 当 i \neq j}\\ {K_i\neq0 ,i=j}\end{cases} ∫t1t2φi(t)φj(t)dt={0,当i̸=jKi̸=0,i=j
式中 K i K_i Ki为常数,则称此函数集为区间( t 1 , t 2 t_1,t_2 t1,t2)的正交函数集。在区间( t 1 , t 2 t_1,t_2 t1,t2)内相互正交的n个函数构成正交信号空间
如果在正交函数集 φ 1 ( t ) , φ 2 ( t ) , φ 3 ( t ) . . . φ n ( t ) {\varphi_1(t),\varphi_2(t),\varphi_3(t)...\varphi_n(t)} φ1(t),φ2(t),φ3(t)...φn(t)之外,不存在函数 ϕ ( t ) ( 0 < ∫ t 1 t 2 ϕ 2 ( t ) d t < ∞ \phi(t)(0<\int_{t_1}^{t_2}\phi^{2}(t)dt<\infty ϕ(t)(0<∫t1t2ϕ2(t)dt<∞满足等式
∫ t 1 t 2 ϕ ( t ) φ i ( t ) d t = 0 ( i = 0 , 1 , 2 , 3... n ) \int_{t_1}^{t_2} \phi(t)\varphi_i(t) dt = 0(i=0,1,2,3...n) ∫t1t2ϕ(t)φi(t)dt=0(i=0,1,2,3...n)
此函数称为完备正交函数集。
例如,三角函数集
1
,
c
o
s
(
Ω
t
)
,
c
o
s
(
2
Ω
t
)
.
.
.
c
o
s
(
m
Ω
t
)
.
.
.
.
s
i
n
(
Ω
t
)
,
s
i
n
(
2
Ω
t
)
,
.
.
.
,
s
i
n
(
2
Ω
t
)
,
.
.
.
s
i
n
(
n
Ω
t
)
,
.
.
.
.
{{1,cos(\Omega t),cos(2\Omega t)...cos(m\Omega t)....sin(\Omega t),sin(2\Omega t),...,sin(2\Omega t),...sin(n\Omega t),....}}
1,cos(Ωt),cos(2Ωt)...cos(mΩt)....sin(Ωt),sin(2Ωt),...,sin(2Ωt),...sin(nΩt),....在区间
(
t
0
,
t
0
+
T
t_0,t_0+T
t0,t0+T)(式中T=
2
π
Ω
\frac{2\pi}{\Omega}
Ω2π)组成正交函数集,而且是完备的正交函数集。
函数集{
s
i
n
(
Ω
t
)
,
s
i
n
(
2
Ω
t
)
,
.
.
.
s
i
n
(
n
Ω
t
)
sin(\Omega t),sin(2\Omega t),...sin(n\Omega t)
sin(Ωt),sin(2Ωt),...sin(nΩt)}在区间(
t
0
,
t
0
+
T
t_0,t_0+T
t0,t0+T)内也是正交函数集,但它是不完备的,因为还有许多函数,如
c
o
s
(
Ω
t
)
,
c
o
s
(
2
Ω
t
)
.
.
.
cos(\Omega t),cos(2\Omega t)...
cos(Ωt),cos(2Ωt)...也与此集中正交
*复函数集{
e
j
n
Ω
t
e^{jn\Omega t}
ejnΩt}
(
n
=
0
,
±
1
,
±
2...
)
(n=0,\pm1,\pm2...)
(n=0,±1,±2...)在区间(
t
0
,
t
0
+
T
t_0,t_0+T
t0,t0+T)内是完备正交函数集,式中T=
2
π
Ω
\frac{2\pi}{\Omega}
Ω2π,满足
∫
t
0
t
0
+
T
e
j
m
Ω
t
(
e
j
n
Ω
t
)
d
t
=
∫
t
0
t
0
+
T
e
j
(
m
−
n
)
Ω
t
d
t
=
{
0
,
当
m
≠
n
T
,
当
m
=
n
\int_{t_0}^{t_0+T}e^{jm\Omega t}(e^{jn\Omega t}) dt = \int_{t_0}^{t_0+T}e^{j(m-n)\Omega t} dt =\begin{cases} {0 ,当m\neq n}\\ {T,当m=n} \end{cases}
∫t0t0+TejmΩt(ejnΩt)dt=∫t0t0+Tej(m−n)Ωtdt={0,当m̸=nT,当m=n
信号分解为正交函数
设有n个函数 φ 1 ( t ) , φ 2 ( t ) , φ 3 ( t ) . . . φ n ( t ) {\varphi_1(t),\varphi_2(t),\varphi_3(t)...\varphi_n(t)} φ1(t),φ2(t),φ3(t)...φn(t)在区间( t 1 , t 2 t_1,t_2 t1,t2)构成一个正交函数函数空间。将任一函数f(t)用这n个正交函数的线性组合来表示,可表示为
f ( t ) ≈ C 1 φ 1 ( t ) + C 2 φ 2 ( t ) + . . . C n φ n ( t ) = ∑ j = 1 n C j φ j ( t ) f(t)\approx C_1\varphi_1(t)+C_2\varphi_2(t)+...C_n\varphi_n(t)=\sum_{j=1}^n C_j\varphi_j(t) f(t)≈C1φ1(t)+C2φ2(t)+...Cnφn(t)=j=1∑nCjφj(t)
推导过程繁琐,见书
结论:当n——>
∞
\infty
∞时,
ε
2
‾
\overline{\varepsilon^2}
ε2=0,
f
(
t
)
=
∑
j
=
1
n
C
j
φ
j
(
t
)
f(t)=\sum_{j=1}^n C_j\varphi_j(t)
f(t)=j=1∑nCjφj(t)
即函数f(t)在区间(
t
1
,
t
2
t_1,t_2
t1,t2)可分解为无穷多项正交函数之和。
傅里叶级数
周期信号
[引用自第一章]
周期的倒数称为该信号的频率。
由上面结论可知,周期信号f(t)在区间(
t
0
,
t
0
+
T
t_0,t_0+T
t0,t0+T)可以展开成完备正交信号空间中的无穷级数。如果完备的正交函数集是三角函数集或指数函数集,那么周期信号所展开的无穷级数就分别称为“三角傅里叶级数”或指数型傅里叶级数,统称傅里叶级数。
只有当满足狄里赫利条件时,才能展开成傅里叶级数。
注:狄利赫利条件:(1 )在一周期内,连续或只有有限个第一类间断点;(2)在一周期内,极大值和极小值的数目应是有限个;(3)在一周期内,信号是绝对可积的。
周期信号的分解
设有周期信号f(t),它的周期是T,角频率 Ω = 2 π F = 2 π T \Omega=2\pi F=\frac{2\pi}{T} Ω=2πF=T2π,它可以分解成
f ( t ) = a 0 2 + a 1 c o s ( Ω t ) + a 2 c o s ( 2 Ω t ) + . . . b 1 s i n ( Ω t ) + b 2 s i n ( 2 Ω t ) + . . f(t)=\frac{a_0}{2}+a_1cos(\Omega t)+a_2cos(2\Omega t)+...b_1sin(\Omega t)+b_2sin(2\Omega t)+.. f(t)=2a0+a1cos(Ωt)+a2cos(2Ωt)+...b1sin(Ωt)+b2sin(2Ωt)+..= a 0 2 + ∑ n = 1 ∞ a n c o s ( n Ω t ) + ∑ n = 1 ∞ b n s i n ( n Ω t ) =\frac{a_0}{2}+\sum_{n=1}^{\infty}a_ncos(n\Omega t)+\sum_{n=1}^{\infty}b_nsin(n\Omega t) =2a0+n=1∑∞ancos(nΩt)+n=1∑∞bnsin(nΩt)
积分区间( t 0 , t 0 + T t_0,t_0+T t0,t0+T)可写为( − T 2 , T 2 -\frac{T}{2},\frac{T}{2} −2T,2T)或(0,T)。
傅里叶系数为
a n = 2 T ∫ − T 2 T 2 f ( t ) c o s ( n Ω t ) d t a_n=\frac{2}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)cos(n\Omega t)dt an=T2∫−2T2Tf(t)cos(nΩt)dtb n = 2 T ∫ − T 2 T 2 f ( t ) s i n ( n Ω t ) d t b_n=\frac{2}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)sin(n\Omega t)dt bn=T2∫−2T2Tf(t)sin(nΩt)dt
关于傅里叶系数的推导
把级数中同频率项合并,可写成
f
(
t
)
=
A
0
2
+
∑
n
=
1
∞
A
n
c
o
s
(
n
Ω
t
+
φ
n
)
f(t)=\frac{A_0}{2}+\sum_{n=1}^{\infty}{A_ncos(n\Omega t+\varphi _n)}
f(t)=2A0+n=1∑∞Ancos(nΩt+φn)
其中:
A
0
=
a
0
A_0=a_0
A0=a0
A
n
=
a
n
2
+
b
n
2
A_n=\sqrt{ a_n^2+b_n^2 }
An=an2+bn2
φ
n
=
−
a
r
c
t
a
n
b
n
a
n
\varphi _n=-arctan\frac{b_n}{a_n}
φn=−arctananbn
其中第一项 A 0 2 \frac{A_0}{2} 2A0是常数项,它是周期信号中包含的直流分量;式中第二项 A 1 c o s ( Ω t + φ 1 ) A_1cos(\Omega t+\varphi _1) A1cos(Ωt+φ1)称为基波或一次谐波,它的角频率与原周期信号相同, A 1 A_1 A1是基波振幅, φ 1 \varphi _1 φ1为基波初相角;式中第三项 A 2 c o s ( 2 Ω t + φ 2 ) A_2cos(2\Omega t+\varphi _2) A2cos(2Ωt+φ2)称为二次谐波,它的频率是基波频率的二倍, A 2 A_2 A2是二次谐波振幅, φ 2 \varphi _2 φ2是其初相角,依次类推还有三次,四次,…谐波,一般而言 A n c o s ( n Ω t + φ n ) A_ncos(n\Omega t+\varphi _n) Ancos(nΩt+φn)称为n次谐波, A n A_n An是n次谐波振幅, φ n \varphi _n φn是其初相角.
奇偶函数的傅里叶变换
傅里叶级数的指数形式
三角函数的傅里叶级数含义明显,但运算不便,故采用指数形式傅里叶级数
由于
c
o
s
x
=
e
j
x
+
e
−
j
x
2
cosx=\frac{e^{jx}+e^{-jx}}{2}
cosx=2ejx+e−jx
所以三角傅里叶级数可以写成
f
(
t
)
=
A
0
2
+
∑
n
=
1
∞
A
n
2
[
e
j
(
n
Ω
t
+
φ
n
)
+
e
−
j
(
n
Ω
t
+
φ
n
)
]
f(t)=\frac{A_0}{2}+\sum_{n=1}^{\infty}\frac{A_n}{2}[e^{j(n\Omega t+\varphi_n)}+e^{-j(n\Omega t+\varphi_n)}]
f(t)=2A0+n=1∑∞2An[ej(nΩt+φn)+e−j(nΩt+φn)]
= A 0 2 + 1 2 ∑ n = 1 ∞ A n e j φ n e j n Ω t + 1 2 ∑ n = 1 ∞ A n e − j φ n e − j n Ω t =\frac{A_0}{2}+\frac{1}{2}\sum_{n=1}^{\infty}A_ne^{j\varphi_n}e^{jn\Omega t}+\frac{1}{2}\sum_{n=1}^{\infty}A_ne^{-j\varphi_n}e^{-jn\Omega t} =2A0+21n=1∑∞AnejφnejnΩt+21n=1∑∞Ane−jφne−jnΩt
将第三项n用-n代替,考虑到
A
n
A_n
An为偶函数,
φ
n
\varphi_n
φn为奇函数则上式转化为
f
(
t
)
=
A
0
2
+
1
2
∑
n
=
1
∞
A
n
e
j
φ
n
e
j
n
Ω
t
+
1
2
∑
n
=
1
∞
A
n
e
−
j
φ
n
e
−
j
n
Ω
t
f(t)=\frac{A_0}{2}+\frac{1}{2}\sum_{n=1}^{\infty}A_ne^{j\varphi_n}e^{jn\Omega t}+\frac{1}{2}\sum_{n=1}^{\infty}A_ne^{-j\varphi_n}e^{-jn\Omega t}
f(t)=2A0+21n=1∑∞AnejφnejnΩt+21n=1∑∞Ane−jφne−jnΩt
= A 0 2 + 1 2 ∑ n = 1 ∞ A n e j φ n e j n Ω t + 1 2 ∑ n = − ∞ − 1 A n e j φ n e j n Ω t =\frac{A_0}{2}+\frac{1}{2}\sum_{n=1}^{\infty}A_ne^{j\varphi_n}e^{jn\Omega t }+\frac{1}{2}\sum_{n=-\infty}^{-1}A_ne^{j\varphi_n}e^{jn\Omega t} =2A0+21n=1∑∞AnejφnejnΩt+21n=−∞∑−1AnejφnejnΩt
A
0
A_0
A0可以写成
A
0
e
j
φ
0
e
j
n
Ω
t
A_0e^{j\varphi_0}e^{jn\Omega t}
A0ejφ0ejnΩt(其中
φ
0
\varphi_0
φ0=0),则上式可写为
f
(
t
)
=
1
2
∑
n
=
−
∞
∞
A
n
e
j
φ
n
e
j
n
Ω
t
f(t)=\frac{1}{2}\sum_{n=-\infty}^{\infty}A_ne^{j\varphi_n}e^{jn\Omega t}
f(t)=21n=−∞∑∞AnejφnejnΩt
令复数量 1 2 A n e j φ n = ∣ F n ∣ e j φ n = F n \frac{1}{2}A_ne^{j\varphi_n}=|F_n|e^{j\varphi_n}=F_n 21Anejφn=∣Fn∣ejφn=Fn,称其为复傅里叶系数,简称傅里叶系数,其模为 ∣ F n ∣ |F_n| ∣Fn∣,相角为 φ n \varphi_n φn,则得傅里叶级数的指数形式为
f ( t ) = ∑ n = − ∞ ∞ F n e j n Ω t f(t)=\sum_{n=-\infty}^{\infty}F_ne^{jn\Omega t} f(t)=n=−∞∑∞FnejnΩt
根据欧拉公式,傅里叶系数
F
n
=
1
2
A
n
e
j
φ
n
=
1
2
(
A
n
c
o
s
φ
n
+
j
A
n
s
i
n
φ
n
)
=
1
2
(
a
n
−
j
b
n
)
F_n=\frac{1}{2}A_ne^{j\varphi_n}=\frac{1}{2}(A_ncos\varphi_n+jA_nsin\varphi_n)=\frac{1}{2}(a_n-jb_n)
Fn=21Anejφn=21(Ancosφn+jAnsinφn)=21(an−jbn)
代入傅里叶级数得
F n = 1 T ∫ − T 2 T 2 f ( t ) c o s ( n Ω t ) d t − j 1 T ∫ − T 2 T 2 f ( t ) s i n Ω t ) d t F_n=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)cos(n\Omega t)dt-j\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)sin\Omega t)dt Fn=T1∫−2T2Tf(t)cos(nΩt)dt−jT1∫−2T2Tf(t)sinΩt)dt
= 1 T ∫ − T 2 T 2 f ( t ) [ c o s ( n Ω t ) − j s i n Ω t ) ] d t =\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)[cos(n\Omega t)-jsin\Omega t)]dt =T1∫−2T2Tf(t)[cos(nΩt)−jsinΩt)]dt
= 1 T ∫ − T 2 T 2 f ( t ) e − j n Ω t d t , n = n = 0 , ± 1 , ± 2... =\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)e^{-jn\Omega t}dt,n=n=0,\pm1,\pm2... =T1∫−2T2Tf(t)e−jnΩtdt,n=n=0,±1,±2...
这就是求指数形式傅里叶级数的复系数
F
n
F_n
Fn的公式
任意周期信号f(t)可分解为许多不同频率的虚指数信号(
e
j
n
Ω
t
e^{jn\Omega t}
ejnΩt)之和,其各分量的复数幅度(或相量)为
F
n
F_n
Fn.
周期信号的频谱
周期信号的频谱
周期信号可以分解成一系列正弦信号或虚指数信号之和
f ( t ) = A 0 2 + ∑ n = 1 ∞ A n c o s ( n Ω t + φ n ) f(t)=\frac{A_0}{2}+\sum_{n=1}^{\infty}{A_ncos(n\Omega t+\varphi _n)} f(t)=2A0+n=1∑∞Ancos(nΩt+φn)
或
f ( t ) = ∑ n = − ∞ ∞ F n e j n Ω t f(t)=\sum_{n=-\infty}^{\infty}F_ne^{jn\Omega t} f(t)=n=−∞∑∞FnejnΩt
其中
F
n
=
1
2
A
n
e
j
φ
n
=
∣
F
n
∣
e
j
φ
n
F_n=\frac{1}{2}A_ne^{j\varphi_n}=|F_n|e^{j\varphi_n}
Fn=21Anejφn=∣Fn∣ejφn.
以频率为横坐标,以各谐波的振幅
A
n
A_n
An或虚指数函数的幅度
∣
F
n
∣
|F_n|
∣Fn∣为纵坐标,可画出图像,称为幅度(振幅)频谱,简称为幅度频。图中每条数显代表该频率分量的幅度,称为谱线。连接各谱线顶点的曲线称为包络线,它反映了各分量幅度随频率变化的情况。
类似的,也可以画出各谐波初相角
φ
n
\varphi_n
φn与频率(或角频率)的线图,称为相位频谱,简称相位谱。
周期矩形脉冲的频谱
设一幅度为1,脉冲宽度为 τ \tau τ的周期矩形脉冲,其周期为T。根据傅里叶级数的指数形式可求得
F
n
=
1
T
∫
−
T
2
T
2
f
(
t
)
e
−
j
n
Ω
t
d
t
=
1
T
∫
−
τ
2
τ
2
e
−
j
n
Ω
t
d
t
=
1
T
e
−
j
n
Ω
t
−
j
n
Ω
∣
−
τ
2
τ
2
F_n=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)e^{-jn\Omega t}dt=\frac{1}{T}\int_{-\frac{\tau}{2}}^{\frac{\tau}{2}}e^{-jn\Omega t}dt=\frac{1}{T}\frac{e^{-jn\Omega t}}{-jn\Omega}|_{-\frac{\tau}{2}}^{\frac{\tau}{2}}
Fn=T1∫−2T2Tf(t)e−jnΩtdt=T1∫−2τ2τe−jnΩtdt=T1−jnΩe−jnΩt∣−2τ2τ
由
上式
1
T
e
−
j
n
Ω
t
−
j
n
Ω
∣
−
τ
2
τ
2
\frac{1}{T}\frac{e^{-jn\Omega t}}{-jn\Omega}|_{-\frac{\tau}{2}}^{\frac{\tau}{2}}
T1−jnΩe−jnΩt∣−2τ2τ转化为
2
T
s
i
n
(
n
Ω
τ
2
)
n
Ω
=
τ
T
s
i
n
(
n
Ω
τ
2
)
n
Ω
τ
2
,
n
=
0
,
±
1
,
±
2...
\frac{2}{T}\frac{sin(\frac{n\Omega \tau}{2})}{n\Omega}=\frac{\tau}{T}\frac{sin(\frac{n\Omega \tau}{2})}{\frac{n\Omega \tau}{2}},n=0,\pm1,\pm2...
T2nΩsin(2nΩτ)=Tτ2nΩτsin(2nΩτ),n=0,±1,±2...
由于
Ω
=
2
π
T
\Omega =\frac{2\pi}{T}
Ω=T2π上式也可写为
F
n
=
τ
T
s
i
n
(
n
π
τ
T
)
n
π
τ
T
,
n
=
0
,
±
1
,
±
2...
F_n=\frac{\tau}{T}\frac{sin(\frac{n\pi \tau}{T})}{\frac{n\pi \tau}{T}},n=0,\pm1,\pm2...
Fn=TτTnπτsin(Tnπτ),n=0,±1,±2...
由取样函数
S
a
(
x
)
=
s
i
n
x
x
Sa(x)=\frac{sinx}{x}
Sa(x)=xsinx,
可得
F
n
=
τ
T
S
a
(
n
π
τ
T
)
=
τ
T
S
a
(
n
Ω
τ
2
)
,
n
=
0
,
±
1
,
±
2...
F_n=\frac{\tau}{T}Sa(\frac{n\pi \tau}{T})=\frac{\tau}{T}Sa(\frac{n\Omega \tau}{2}),n=0,\pm1,\pm2...
Fn=TτSa(Tnπτ)=TτSa(2nΩτ),n=0,±1,±2...
所以这类周期性矩形脉冲的指数形式傅里叶级数展开式为
f
(
t
)
=
∑
n
=
−
∞
∞
F
n
e
j
n
Ω
t
=
τ
T
∑
n
=
−
∞
∞
S
a
(
n
π
τ
T
)
e
j
n
Ω
t
f(t)=\sum_{n=-\infty}^{\infty} {F_ne^{jn\Omega t}}=\frac{\tau}{T} \sum_{n=-\infty}^{\infty} {Sa(\frac{n\pi \tau}{T})e^{jn\Omega t}}
f(t)=n=−∞∑∞FnejnΩt=Tτn=−∞∑∞Sa(Tnπτ)ejnΩt
周期信号的功率
平均功率
P = 1 T ∫ − T 2 T 2 f 2 ( t ) d t P=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f^2(t)dt P=T1∫−2T2Tf2(t)dt
将f(t)展开得
P = 1 T ∫ − T 2 T 2 [ A 0 2 + ∑ n = 1 ∞ A n c o s ( n Ω t + φ n ) ] 2 d t P=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}[\frac{A_0}{2}+\sum_{n=1}^{\infty}{A_ncos(n\Omega t+\varphi _n)}]^2dt P=T1∫−2T2T[2A0+n=1∑∞Ancos(nΩt+φn)]2dt
展开后化简,正交式为0,最后消得
P
=
1
T
∫
−
T
2
T
2
f
2
(
t
)
d
t
=
(
A
0
2
)
2
+
∑
n
=
1
∞
1
2
A
n
2
P=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f^2(t)dt=(\frac{A_0}{2})^2+\sum_{n=1}^{\infty} \frac{1}{2}A^2_n
P=T1∫−2T2Tf2(t)dt=(2A0)2+n=1∑∞21An2
由于
∣
F
n
∣
=
1
2
A
n
|F_n|=\frac{1}{2}A_n
∣Fn∣=21An
所以上式可以改为
P
=
1
T
∫
−
T
2
T
2
f
2
(
t
)
d
t
=
∣
F
0
∣
2
+
2
∑
n
=
1
∞
∣
F
n
∣
2
=
∑
n
=
−
∞
∞
∣
F
n
∣
2
P=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f^2(t)dt=|F_0|^2+2\sum_{n=1}^{\infty}|F_n|^2=\sum_{n=-\infty}^{\infty}|F_n|^2
P=T1∫−2T2Tf2(t)dt=∣F0∣2+2n=1∑∞∣Fn∣2=n=−∞∑∞∣Fn∣2
上式称为帕斯瓦尔恒等式,表明对于周期信号,在时域中求得的信号功率与在频域中求得的相同。
非周期信号的频谱
傅里叶变换
非周期信号
当周期T区域无限大时,相邻谱线的间隔
Ω
\Omega
Ω趋于无穷小,从而信号的频谱成为连续频谱。同时,各频率分量的幅度也都趋近于无穷小,不过这些无穷小量之间仍然存在一定的比例关系。所以为了描述非周期信号的频谱特性,引入频谱密度的概念。令
F
(
j
ω
)
=
lim
T
→
∞
F
n
1
/
T
=
lim
T
→
∞
F
n
T
F(j\omega)=\lim\limits_{T \rightarrow \infty} \frac{F_n}{1/T}=\lim\limits_{T \rightarrow \infty} F_nT
F(jω)=T→∞lim1/TFn=T→∞limFnT
由之前推导可得
F n T = ∫ − T 2 T 2 f ( t ) e − j n Ω t d t F_nT=\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)e^{-jn\Omega t}dt FnT=∫−2T2Tf(t)e−jnΩtdt
f ( t ) = ∑ n = − ∞ ∞ F n T e j n Ω t ⋅ 1 T f(t)=\sum_{n=-\infty}^{\infty}F_nTe^{jn\Omega t}\cdot \frac{1}{T} f(t)=n=−∞∑∞FnTejnΩt⋅T1
当 T → ∞ T\rightarrow \infty T→∞时, Ω \Omega Ω趋近于无穷小,取 d ω d\omega dω, n Ω n\Omega nΩ是变量,当 Ω \Omega Ω趋于0时,它成为连续变量,取为 ω \omega ω
F ( j ω ) = lim T → ∞ F n T = ∫ − ∞ ∞ f ( t ) e − j ω t d t ( 1 ) F(j\omega)=\lim\limits_{T \rightarrow \infty} F_nT=\int_{- \infty}^{ \infty}f(t)e^{-j\omega t}dt (1) F(jω)=T→∞limFnT=∫−∞∞f(t)e−jωtdt(1)
f ( t ) = 1 2 π ∫ − ∞ − ∞ F ( j ω ) e j ω t d ω ( 2 ) f(t)=\frac{1}{2\pi}\int_{- \infty}^{-\infty}F(j\omega)e^{j\omega t}d\omega(2) f(t)=2π1∫−∞−∞F(jω)ejωtdω(2)
(1)式称为傅里叶的变换(积分),(2)式称为傅里叶的逆变换,
F
(
j
ω
)
F(j\omega)
F(jω)称为
f
(
t
)
f(t)
f(t)的频谱密度函数或者频谱函数
F
(
j
ω
)
=
F
[
f
(
t
)
]
F(j\omega)=\mathscr{F}[f(t)]
F(jω)=F[f(t)]
f
(
t
)
=
F
−
1
[
F
(
j
ω
)
]
f(t)=\mathscr{F}^{-1}[F(j\omega)]
f(t)=F−1[F(jω)]
还可以简记为
f ( t ) ← → F ( j ω ) f(t)\leftarrow\rightarrow F(j\omega) f(t)←→F(jω)
频谱密度函数
F
(
j
ω
)
=
∣
F
(
j
ω
)
∣
e
j
φ
(
ω
)
=
R
(
ω
)
+
j
X
(
ω
)
F(j\omega)=|F(j\omega)|e^{j\varphi(\omega)}=R(\omega)+jX(\omega)
F(jω)=∣F(jω)∣ejφ(ω)=R(ω)+jX(ω)
逆变换也可以写成三角形式
f
(
t
)
=
1
π
∫
0
∞
∣
F
(
j
ω
)
∣
c
o
s
[
ω
t
+
φ
(
ω
)
]
d
ω
f(t)=\frac{1}{\pi}\int_{0}^{\infty}|F(j\omega)|cos[\omega t +\varphi(\omega)]d\omega
f(t)=π1∫0∞∣F(jω)∣cos[ωt+φ(ω)]dω
傅里叶变换的充分条件是在无限区间内
f
(
t
)
f(t)
f(t)绝对可积,即
∫
−
∞
∞
∣
f
(
t
)
∣
d
t
<
∞
\int_{-\infty}^{\infty} |f(t)|dt<\infty
∫−∞∞∣f(t)∣dt<∞
常见基本信号的傅里叶变换
1.门函数
g
τ
(
t
)
g_\tau(t)
gτ(t)
宽度为
τ
\tau
τ,幅度为1
g
τ
(
t
)
=
{
1
,
∣
t
∣
<
τ
2
0
,
∣
t
∣
>
τ
2
g_\tau(t)=\begin{cases} {1,|t|<\frac{\tau}{2}}\\ {0,|t|>\frac{\tau}{2}} \end{cases}
gτ(t)={1,∣t∣<2τ0,∣t∣>2τ
频谱函数为
F
(
j
ω
)
=
∫
−
∞
∞
f
(
t
)
e
−
j
ω
t
d
t
=
∫
−
τ
2
τ
2
1
⋅
e
−
j
ω
t
d
t
=
e
−
j
ω
τ
2
−
e
j
ω
τ
2
−
j
ω
F(j\omega)=\int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt=\int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} 1\cdot e^{-j\omega t}dt=\frac{e^{-j\frac{\omega \tau}{2}}-e^{j\frac{\omega \tau}{2}}}{-j\omega}
F(jω)=∫−∞∞f(t)e−jωtdt=∫−2τ2τ1⋅e−jωtdt=−jωe−j2ωτ−ej2ωτ
= 2 s i n ( ω τ 2 ) ω = τ S a ( ω τ 2 ) =\frac{2sin(\frac{\omega \tau}{2})}{\omega}=\tau Sa(\frac{\omega\tau}{2}) =ω2sin(2ωτ)=τSa(2ωτ)
2.单边指数函数 e − α t ε ( t ) e^{-\alpha t}\varepsilon(t) e−αtε(t)
F ( j ω ) = ∫ − ∞ ∞ f ( t ) e − j ω t d t = ∫ 0 ∞ e − α t ⋅ e − j ω t d t = 1 α + j ω , α > 0 F(j\omega)=\int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt=\int_{0}^{\infty}e^{-\alpha t}\cdot e^{-j\omega t}dt=\frac{1}{\alpha+j\omega},\alpha>0 F(jω)=∫−∞∞f(t)e−jωtdt=∫0∞e−αt⋅e−jωtdt=α+jω1,α>0
3.双边指数函数
e
−
α
∣
t
∣
e^{-\alpha |t|}
e−α∣t∣
F
(
j
ω
)
=
∫
−
∞
0
e
α
t
⋅
e
−
j
ω
t
d
t
+
∫
0
∞
e
−
α
t
⋅
e
−
j
ω
t
d
t
F(j\omega)=\int_{-\infty}^{0} e^{\alpha t}\cdot e^{-j\omega t}dt+\int_{0}^{\infty}e^{-\alpha t}\cdot e^{-j\omega t}dt
F(jω)=∫−∞0eαt⋅e−jωtdt+∫0∞e−αt⋅e−jωtdt
= 1 α − j ω + 1 α + j ω = 2 α α 2 + ω 2 =\frac{1}{\alpha-j\omega}+\frac{1}{\alpha+j\omega}=\frac{2\alpha}{\alpha^2+\omega^2} =α−jω1+α+jω1=α2+ω22α
奇异函数的傅里叶变换
1.冲激函数
δ
(
t
)
\delta(t)
δ(t)
F
[
δ
(
t
)
]
=
∫
−
∞
∞
δ
(
t
)
e
−
j
ω
t
d
t
=
1
\mathscr{F}[\delta(t)]=\int_{-\infty}^{\infty}\delta(t)e^{-j\omega t}dt=1
F[δ(t)]=∫−∞∞δ(t)e−jωtdt=1
2.冲激函数导数
δ
′
(
t
)
\delta\prime(t)
δ′(t)
F
[
δ
′
(
t
)
]
=
j
ω
\mathscr{F}[\delta\prime(t)]=j\omega
F[δ′(t)]=jω
3.单位直流信号1
f
(
t
)
=
e
−
α
∣
t
∣
f(t)=e^{-\alpha |t|}
f(t)=e−α∣t∣
F
(
j
ω
)
=
2
α
α
2
+
ω
2
F(j\omega)=\frac{2\alpha}{\alpha^2+\omega^2}
F(jω)=α2+ω22α
当
α
−
>
0
\alpha->0
α−>0
lim α − > 0 ∫ − ∞ ∞ 2 α α 2 + ω 2 d ω = lim α − > 0 ∫ − ∞ ∞ 2 1 + ( ω α ) 2 d ( ω α ) = = lim α − > 0 2 a r c t a n ( ω α ) ∣ − ∞ ∞ = 2 π \lim\limits_{\alpha->0}\int_{-\infty}^{\infty} \frac{2\alpha}{\alpha^2+\omega^2}d\omega=\lim\limits_{\alpha->0}\int_{-\infty}^{\infty} \frac{2}{1+(\frac{\omega}{\alpha})^2}d(\frac{\omega}{\alpha})==\lim\limits_{\alpha->0}2arctan(\frac{\omega}{\alpha})|_{-\infty}^{\infty}=2\pi α−>0lim∫−∞∞α2+ω22αdω=α−>0lim∫−∞∞1+(αω)22d(αω)==α−>0lim2arctan(αω)∣−∞∞=2π
所以 F ( j ω ) = lim α − > 0 2 α α 2 + ω 2 = 2 π δ ( ω ) F(j\omega)=\lim\limits_{\alpha->0} \frac{2\alpha}{\alpha^2+\omega^2}=2\pi \delta(\omega) F(jω)=α−>0limα2+ω22α=2πδ(ω)
4.符号函数
s
g
n
(
t
)
sgn(t)
sgn(t)
s
g
n
(
t
)
=
{
−
1
,
t
<
0
0
,
t
=
0
1
,
t
>
0
sgn(t)=\begin{cases} {-1,t<0}\\ {0,t=0}\\{1,t>0} \end{cases}
sgn(t)=⎩⎪⎨⎪⎧−1,t<00,t=01,t>0
F
[
s
g
n
(
t
)
]
=
2
j
ω
\mathscr{F}[sgn(t)]=\frac{2}{j\omega}
F[sgn(t)]=jω2
5.阶跃函数
ε
(
t
)
\varepsilon(t)
ε(t)
阶跃函数可以看成是幅度为
1
2
\frac{1}{2}
21的直流信号和幅度为
1
2
\frac{1}{2}
21的符号函数之和
ε
(
t
)
=
1
2
+
1
2
s
g
n
(
t
)
\varepsilon(t)=\frac{1}{2}+\frac{1}{2}sgn(t)
ε(t)=21+21sgn(t)
对上面进行傅里叶变换
F
[
ε
(
t
)
]
=
π
δ
(
ω
)
+
1
j
ω
\mathscr{F}[\varepsilon(t)]=\pi\delta(\omega)+\frac{1}{j\omega}
F[ε(t)]=πδ(ω)+jω1
傅里叶变换的性质
傅里叶变换
f
(
t
)
←
→
F
(
j
ω
)
f(t)\leftarrow\rightarrow F(j\omega)
f(t)←→F(jω)
时域和频域的关系
F
(
j
ω
)
=
F
[
f
(
t
)
]
=
∫
−
∞
∞
f
(
t
)
e
−
j
ω
t
d
t
F(j\omega)=\mathscr{F}[f(t)]=\int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt
F(jω)=F[f(t)]=∫−∞∞f(t)e−jωtdt
f ( t ) = F − 1 [ F ( j ω ) ] = 1 2 π ∫ − ∞ ∞ F ( j ω ) e j ω t d ω f(t)=\mathscr{F}^{-1}[F(j\omega)]=\frac{1}{2\pi}\int_{-\infty}^{\infty}F(j\omega)e^{j\omega t}d\omega f(t)=F−1[F(jω)]=2π1∫−∞∞F(jω)ejωtdω
一.线性
若 f 1 ( t ) ← → F 1 ( j ω ) f_1(t)\leftarrow\rightarrow F_1(j\omega) f1(t)←→F1(jω)
f 2 ( t ) ← → F 2 ( j ω ) f_2(t)\leftarrow\rightarrow F_2(j\omega) f2(t)←→F2(jω) 则对任意常数 a 1 a_1 a1和 a 2 a_2 a2,有
a 1 f 1 ( t ) + a 2 f 2 ( t ) = a 1 F 1 ( j ω ) + a 2 F 2 ( j ω ) a_1f_1(t)+a_2f_2(t)=a_1F_1(j\omega)+a_2F_2(j\omega) a1f1(t)+a2f2(t)=a1F1(jω)+a2F2(jω)
线性性质有两个含义:
(1)齐次性
(2)可加性
在求
ε
(
t
)
\varepsilon(t)
ε(t)的频谱函数时已经用了线性性质
二.奇偶性
F ( j ω ) = ∫ − ∞ ∞ f ( t ) e − j ω t d t = ∫ − ∞ ∞ f ( t ) c o s ( ω t ) d t − ∫ − ∞ ∞ f ( t ) s i n ( ω t ) d t F(j\omega)=\int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt=\int_{-\infty}^{\infty} f(t)cos(\omega t)dt-\int_{-\infty}^{\infty} f(t)sin(\omega t)dt F(jω)=∫−∞∞f(t)e−jωtdt=∫−∞∞f(t)cos(ωt)dt−∫−∞∞f(t)sin(ωt)dt
= R ( ω ) + j X ( ω ) = ∣ F ( j ω ) ∣ e j φ ( ω ) =R(\omega)+jX(\omega)=|F(j\omega)|e^{j\varphi(\omega)} =R(ω)+jX(ω)=∣F(jω)∣ejφ(ω)
三.对称性
若 f ( t ) ← → F ( j ω ) f(t)\leftarrow\rightarrow F(j\omega) f(t)←→F(jω) 则
F ( j t ) ← → 2 π f ( − ω ) F(jt)\leftarrow\rightarrow 2\pi f(-\omega) F(jt)←→2πf(−ω)
证明:
f
(
t
)
=
=
1
2
π
∫
−
∞
∞
F
(
j
ω
)
e
j
ω
t
d
ω
f(t)==\frac{1}{2\pi}\int_{-\infty}^{\infty}F(j\omega)e^{j\omega t}d\omega
f(t)==2π1∫−∞∞F(jω)ejωtdω
f
(
−
t
)
=
=
1
2
π
∫
−
∞
∞
F
(
j
ω
)
e
−
j
ω
t
d
ω
f(-t)==\frac{1}{2\pi}\int_{-\infty}^{\infty}F(j\omega)e^{-j\omega t}d\omega
f(−t)==2π1∫−∞∞F(jω)e−jωtdω
将
t
t
t换为
ω
\omega
ω,
ω
\omega
ω换为
t
t
t
f
(
−
ω
)
=
=
1
2
π
∫
−
∞
∞
F
(
j
t
)
e
−
j
ω
t
d
ω
f(-\omega)==\frac{1}{2\pi}\int_{-\infty}^{\infty}F(jt)e^{-j\omega t}d\omega
f(−ω)==2π1∫−∞∞F(jt)e−jωtdω
2
π
f
(
−
ω
)
=
=
∫
−
∞
∞
F
(
j
t
)
e
−
j
ω
t
d
ω
2\pi f(-\omega)==\int_{-\infty}^{\infty}F(jt)e^{-j\omega t}d\omega
2πf(−ω)==∫−∞∞F(jt)e−jωtdω
例1:
δ
(
t
)
←
→
1
\delta(t)\leftarrow\rightarrow 1
δ(t)←→1
1
←
→
2
π
δ
(
ω
)
1\leftarrow\rightarrow 2\pi \delta(\omega)
1←→2πδ(ω)
例2:
求
t
t
t和
1
t
\frac{1}{t}
t1的频谱函数
1.
t
t
t
δ
′
(
t
)
←
→
j
ω
\delta\prime(t)\leftarrow\rightarrow j\omega
δ′(t)←→jω
由对称性可得
j
t
←
→
2
π
δ
′
(
−
ω
)
jt\leftarrow\rightarrow 2\pi \delta\prime(-\omega)
jt←→2πδ′(−ω)
所以
t
←
→
j
2
π
δ
′
(
ω
)
t\leftarrow\rightarrow j2\pi \delta\prime(\omega)
t←→j2πδ′(ω)
2.
1
t
\frac{1}{t}
t1
s
g
n
(
t
)
←
→
2
j
ω
sgn(t)\leftarrow\rightarrow \frac{2}{j\omega}
sgn(t)←→jω2
由对称性
2
j
t
←
→
2
π
s
g
n
(
−
ω
)
\frac{2}{jt}\leftarrow\rightarrow 2\pi sgn(-\omega)
jt2←→2πsgn(−ω)
1
t
←
→
−
j
π
s
g
n
(
ω
)
\frac{1}{t}\leftarrow\rightarrow -j\pi sgn(\omega)
t1←→−jπsgn(ω)
四.尺度变换
若 f ( t ) ← → F ( j ω ) f(t)\leftarrow\rightarrow F(j\omega) f(t)←→F(jω)
则对于实常数a(a ≠ \neq ̸= 0),有
f ( a t ) ← → 1 ∣ a ∣ F ( j ω a ) f(at)\leftarrow\rightarrow \frac{1}{|a|}F(j\frac{\omega}{a}) f(at)←→∣a∣1F(jaω)
证明
F
[
f
(
a
t
)
]
=
∫
−
∞
∞
f
(
a
t
)
e
−
j
ω
t
d
t
\mathscr{F}[f(at)]=\int_{-\infty}^{\infty}f(at)e^{-j\omega t}dt
F[f(at)]=∫−∞∞f(at)e−jωtdt
令x=at,t=
x
a
,
d
t
=
1
a
d
x
\frac{x}{a},dt=\frac{1}{a}dx
ax,dt=a1dx
当a>0时
F
[
f
(
a
t
)
]
=
∫
−
∞
∞
f
(
x
)
e
−
j
ω
x
a
1
a
d
x
=
1
a
∫
−
∞
∞
f
(
x
)
e
−
j
ω
a
x
d
x
=
1
a
F
(
j
ω
a
)
\mathscr{F}[f(at)]=\int_{-\infty}^{\infty}f(x)e^{-j\omega\frac{x}{a}}\frac{1}{a}dx=\frac{1}{a}\int_{-\infty}^{\infty}f(x)e^{-j\frac{\omega}{a}x}dx=\frac{1}{a}F(j\frac{\omega}{a})
F[f(at)]=∫−∞∞f(x)e−jωaxa1dx=a1∫−∞∞f(x)e−jaωxdx=a1F(jaω)
当a<0时
F
[
f
(
a
t
)
]
=
∫
−
∞
∞
f
(
x
)
e
−
j
ω
x
a
1
a
d
x
=
−
1
a
∫
−
∞
∞
f
(
x
)
e
−
j
ω
a
x
d
x
=
−
1
a
F
(
j
ω
a
)
\mathscr{F}[f(at)]=\int_{-\infty}^{\infty}f(x)e^{-j\omega\frac{x}{a}}\frac{1}{a}dx=-\frac{1}{a}\int_{-\infty}^{\infty}f(x)e^{-j\frac{\omega}{a}x}dx=-\frac{1}{a}F(j\frac{\omega}{a})
F[f(at)]=∫−∞∞f(x)e−jωaxa1dx=−a1∫−∞∞f(x)e−jaωxdx=−a1F(jaω)
五.时移特性
若
f ( t ) ← → F ( j ω ) f(t)\leftarrow\rightarrow F(j\omega) f(t)←→F(jω) 且 t 0 t_0 t0为常数,则有 f ( t ± t 0 ) ← → e ± j ω t 0 F ( j ω ) f(t\pm t_0)\leftarrow\rightarrow e^{\pm j\omega t_0}F(j\omega) f(t±t0)←→e±jωt0F(jω)
证明:
若
f
(
t
)
←
→
F
(
j
ω
)
f(t)\leftarrow\rightarrow F(j\omega)
f(t)←→F(jω),则延迟信号的傅里叶变换可以写成
F
[
f
(
t
−
t
0
)
]
=
∫
−
∞
∞
f
(
t
−
t
0
)
e
−
j
ω
t
d
t
\mathscr{F}[f(t-t_0)]=\int_{-\infty}^{\infty}f(t-t_0)e^{-j\omega t}dt
F[f(t−t0)]=∫−∞∞f(t−t0)e−jωtdt
令
x
=
t
−
t
0
x=t-t_0
x=t−t0,则上式写成
F
[
f
(
x
)
]
=
∫
−
∞
∞
f
(
x
)
e
−
j
ω
(
x
+
t
0
)
d
x
=
e
−
j
ω
t
0
∫
−
∞
∞
f
(
x
)
e
−
j
ω
x
d
x
=
e
−
j
ω
t
0
F
(
j
ω
)
\mathscr{F}[f(x)]=\int_{-\infty}^{\infty}f(x)e^{-j\omega (x+t_0)}dx=e^{-j\omega t_0}\int_{-\infty}^{\infty}f(x)e^{-j\omega x}dx=e^{-j\omega t_0}F(j\omega)
F[f(x)]=∫−∞∞f(x)e−jω(x+t0)dx=e−jωt0∫−∞∞f(x)e−jωxdx=e−jωt0F(jω)
同理可得
f
(
t
+
t
0
)
←
→
e
j
ω
t
0
F
(
j
ω
)
f(t+ t_0)\leftarrow\rightarrow e^{ j\omega t_0}F(j\omega)
f(t+t0)←→ejωt0F(jω)
时移和尺度变换结合
f ( a t − b ) ← → 1 ∣ a ∣ e − j b a ω F ( j ω a ) f(at - b)\leftarrow\rightarrow \frac{1}{|a|}e^{ -j\frac{b}{a}\omega }F(j\frac{\omega}{a}) f(at−b)←→∣a∣1e−jabωF(jaω)
六.频移特性
若 f ( t ) ← → F ( j ω ) f(t)\leftarrow\rightarrow F(j\omega) f(t)←→F(jω) 且 ω 0 \omega_0 ω0为常数,则
f ( t ) e ± j ω 0 t ← → F [ j ( ω ± ω 0 ) ] f(t)e^{\pm j\omega_0 t}\leftarrow\rightarrow F[j(\omega\pm \omega_0)] f(t)e±jω0t←→F[j(ω±ω0)]
七.卷积定理
时域卷积定理(时域卷积,频域相乘)
若 f 1 ( t ) ← → F 1 ( j ω ) f_1(t)\leftarrow\rightarrow F_1(j\omega) f1(t)←→F1(jω) f 2 ( t ) ← → F 2 ( j ω ) f_2(t)\leftarrow\rightarrow F_2(j\omega) f2(t)←→F2(jω) 则 f 1 ( t ) ∗ f 2 ( t ) ← → F 1 ( j ω ) F 2 ( j ω ) f_1(t)*f_2(t)\leftarrow\rightarrow F_1(j\omega)F_2(j\omega) f1(t)∗f2(t)←→F1(jω)F2(jω)
频域卷积定理
若 f 1 ( t ) ← → F 1 ( j ω ) f_1(t)\leftarrow\rightarrow F_1(j\omega) f1(t)←→F1(jω) f 2 ( t ) ← → F 2 ( j ω ) f_2(t)\leftarrow\rightarrow F_2(j\omega) f2(t)←→F2(jω) 则 f 1 ( t ) f 2 ( t ) ← → 1 2 π F 1 ( j ω ) ∗ F 2 ( j ω ) f_1(t)f_2(t) \leftarrow\rightarrow \frac{1}{2\pi}F_1(j\omega)*F_2(j\omega) f1(t)f2(t)←→2π1F1(jω)∗F2(jω)
八.时域微分和积分
f ( n ) ( t ) = d n f ( t ) d t n f^{(n)}(t)=\frac{d^nf(t)}{dt^n} f(n)(t)=dtndnf(t) f ( − 1 ) ( t ) = ∫ − ∞ t f ( x ) d x f^{(-1)}(t)=\int_{-\infty}^{t}f(x)dx f(−1)(t)=∫−∞tf(x)dx
时域微分(定理)
若 f ( t ) ← → F ( j ω ) f(t)\leftarrow\rightarrow F(j\omega) f(t)←→F(jω) 则
f ( n ) ( t ) ← → ( j ω ) n F ( j ω ) f^{(n)}(t)\leftarrow\rightarrow(j\omega)^nF(j\omega) f(n)(t)←→(jω)nF(jω)
时域积分(定理)
若 f ( t ) ← → F ( j ω ) f(t)\leftarrow\rightarrow F(j\omega) f(t)←→F(jω) 则 f ( − 1 ) ( t ) ← → π F ( 0 ) δ ( ω ) + F ( j ω ) j ω f^{(-1)}(t) \leftarrow\rightarrow\pi F(0)\delta(\omega)+\frac{F(j\omega)}{j\omega} f(−1)(t)←→πF(0)δ(ω)+jωF(jω) 如果F(0)=0,则上式写成 f ( − 1 ) ( t ) ← → F ( j ω ) j ω f^{(-1)}(t) \leftarrow\rightarrow\frac{F(j\omega)}{j\omega} f(−1)(t)←→jωF(jω)
九.频域微分和积分
设
F
(
n
)
(
j
ω
)
=
d
n
F
(
j
ω
)
d
ω
n
F^{(n)}(j\omega) =\frac{ d^nF(j\omega)}{d\omega^n}
F(n)(jω)=dωndnF(jω)
F
−
1
(
j
ω
)
=
∫
−
∞
ω
F
(
j
x
)
d
x
F^{-1}(j\omega)=\int_{-\infty}^{\omega}F(jx)dx
F−1(jω)=∫−∞ωF(jx)dx
频域微分
若 f ( t ) ← → F ( j ω ) f(t)\leftarrow\rightarrow F(j\omega) f(t)←→F(jω) 则
( − j t ) n f ( t ) ← → F ( n ) ( j ω ) (-jt)^nf(t)\leftarrow\rightarrow F^{(n)}(j\omega) (−jt)nf(t)←→F(n)(jω)
频域积分
若 f ( t ) ← → F ( j ω ) f(t)\leftarrow\rightarrow F(j\omega) f(t)←→F(jω) 则 π f ( 0 ) δ ( t ) + f ( t ) − j t ← → F ( − 1 ) ( j ω ) \pi f(0)\delta(t) + \frac{f(t)}{-jt}\leftarrow\rightarrow F^{(-1)}(j\omega) πf(0)δ(t)+−jtf(t)←→F(−1)(jω) 式中
f ( 0 ) = 1 2 π ∫ − ∞ ∞ F ( j ω ) d ω f(0)=\frac{1}{2\pi}\int_{-\infty}^{\infty}F(j\omega)d\omega f(0)=2π1∫−∞∞F(jω)dω
如果 f ( 0 ) = 0 f(0)=0 f(0)=0,则有 f ( t ) − j t ← → F ( − 1 ) ( j ω ) \frac{f(t)}{-jt}\leftarrow\rightarrow F^{(-1)}(j\omega) −jtf(t)←→F(−1)(jω)
十.相关定理
若
f
1
(
t
)
←
→
F
1
(
j
ω
)
f_1(t)\leftarrow\rightarrow F_1(j\omega)
f1(t)←→F1(jω)
f
2
(
t
)
←
→
F
2
(
j
ω
)
f_2(t)\leftarrow\rightarrow F_2(j\omega)
f2(t)←→F2(jω)
R
12
(
τ
)
=
∫
−
∞
∞
f
1
(
t
)
f
2
(
t
−
τ
)
d
t
R_{12}(\tau)=\int_{-\infty}^{\infty} f_1(t)f_2(t-\tau)dt
R12(τ)=∫−∞∞f1(t)f2(t−τ)dt
R
21
(
τ
)
=
∫
−
∞
∞
f
1
(
t
−
τ
)
f
2
(
t
)
d
t
R_{21}(\tau)=\int_{-\infty}^{\infty} f_1(t-\tau)f_2(t)dt
R21(τ)=∫−∞∞f1(t−τ)f2(t)dt
则
F
[
R
12
(
τ
)
]
=
F
1
(
j
ω
)
F
2
∗
(
j
ω
)
\mathscr{F}[R_{12}(\tau)]=F_1(j\omega)F_2^*(j\omega)
F[R12(τ)]=F1(jω)F2∗(jω)
F
[
R
21
(
τ
)
]
=
F
1
∗
(
j
ω
)
F
2
(
j
ω
)
\mathscr{F}[R_{21}(\tau)]=F_1^*(j\omega)F_2(j\omega)
F[R21(τ)]=F1∗(jω)F2(jω)
若 f 1 ( t ) = f 2 ( t ) = f ( t ) f_1(t)=f_2(t)=f(t) f1(t)=f2(t)=f(t),则
F
[
R
(
τ
)
]
=
[
F
(
j
ω
)
]
2
\mathscr{F}[R(\tau)]=[F(j\omega)]^2
F[R(τ)]=[F(jω)]2
即它的傅里叶变换等于原信号幅度谱的平方
能量谱和功率谱
能量谱
E
=
∫
−
∞
∞
f
2
(
t
)
d
t
E=\int_{-\infty}^{\infty}f^2(t)dt
E=∫−∞∞f2(t)dt
E
=
∫
−
∞
∞
f
2
(
t
)
d
t
=
∫
−
∞
∞
f
(
t
)
[
1
2
π
∫
−
∞
∞
F
(
j
ω
)
e
j
ω
t
d
ω
]
d
t
=
1
2
π
∫
−
∞
∞
F
(
j
ω
)
[
∫
−
∞
∞
f
(
t
)
e
j
ω
t
d
t
]
d
ω
=
1
2
π
∫
−
∞
∞
F
(
j
ω
)
F
(
−
j
ω
)
d
ω
E=\int_{-\infty}^{\infty}f^2(t)dt=\int_{-\infty}^{\infty} f(t)[\frac{1}{2\pi}\int_{-\infty}^{\infty}F(j\omega)e^{j\omega t}d\omega]dt=\frac{1}{2\pi}\int_{-\infty}^{\infty}F(j\omega) [\int_{-\infty}^{\infty}f(t)e^{j\omega t}dt]d\omega=\frac{1}{2\pi}\int_{-\infty}^{\infty}F(j\omega)F(-j\omega)d\omega
E=∫−∞∞f2(t)dt=∫−∞∞f(t)[2π1∫−∞∞F(jω)ejωtdω]dt=2π1∫−∞∞F(jω)[∫−∞∞f(t)ejωtdt]dω=2π1∫−∞∞F(jω)F(−jω)dω
E = 1 2 π ∫ − ∞ ∞ ∣ F ( j ω ) ∣ 2 d ω = 1 2 π ∫ − ∞ ∞ E ( ω ) d ω E=\frac{1}{2\pi}\int_{-\infty}^{\infty}|F(j\omega)|^2d\omega=\frac{1}{2\pi}\int_{-\infty}^{\infty}\mathscr{E}(\omega)d\omega E=2π1∫−∞∞∣F(jω)∣2dω=2π1∫−∞∞E(ω)dω
E ( ω ) = ∣ F ( j ω ) ∣ 2 \mathscr{E}(\omega)=|F(j\omega)|^2 E(ω)=∣F(jω)∣2
功率谱
P
=
P=
P=