信号第四章

总目录

信号与系统公式汇总

第四章 傅里叶变换和系统的频域分析

信号分解为正交函数

正交函数集

正交定义

如有定义在( t 1 , t 2 t_1,t_2 t1,t2)区间两个函数 φ 1 ( t ) \varphi_1(t) φ1(t) φ 2 ( t ) \varphi_2(t) φ2(t),若满足
∫ t 1 t 2 φ 1 ( t ) φ 2 ( t ) d t = 0 \int_{t_1}^{t_2} \varphi_1(t)\varphi_2(t) dt = 0 t1t2φ1(t)φ2(t)dt=0
则称 φ 1 ( t ) \varphi_1(t) φ1(t) φ 2 ( t ) \varphi_2(t) φ2(t)在区间内正交。

如有n个函数 φ 1 ( t ) , φ 2 ( t ) , φ 3 ( t ) . . . φ n ( t ) \varphi_1(t),\varphi_2(t),\varphi_3(t)...\varphi_n(t) φ1(t)φ2(t)φ3(t)...φn(t)构成一个函数集,当这些函数在区间( t 1 , t 2 t_1,t_2 t1,t2)内满足:
∫ t 1 t 2 φ i ( t ) φ j ( t ) d t = { 0 , 当 i ≠ j K i ≠ 0 , i = j \int_{t_1}^{t_2} \varphi_i(t)\varphi_j(t) dt =\begin{cases} {0 , 当 i \neq j}\\ {K_i\neq0 ,i=j}\end{cases} t1t2φi(t)φj(t)dt={0i̸=jKi̸=0i=j
式中 K i K_i Ki为常数,则称此函数集为区间( t 1 , t 2 t_1,t_2 t1,t2)的正交函数集。在区间( t 1 , t 2 t_1,t_2 t1,t2)内相互正交的n个函数构成正交信号空间

如果在正交函数集 φ 1 ( t ) , φ 2 ( t ) , φ 3 ( t ) . . . φ n ( t ) {\varphi_1(t),\varphi_2(t),\varphi_3(t)...\varphi_n(t)} φ1(t)φ2(t)φ3(t)...φn(t)之外,不存在函数 ϕ ( t ) ( 0 &lt; ∫ t 1 t 2 ϕ 2 ( t ) d t &lt; ∞ \phi(t)(0&lt;\int_{t_1}^{t_2}\phi^{2}(t)dt&lt;\infty ϕ(t)0<t1t2ϕ2(t)dt<满足等式
∫ t 1 t 2 ϕ ( t ) φ i ( t ) d t = 0 ( i = 0 , 1 , 2 , 3... n ) \int_{t_1}^{t_2} \phi(t)\varphi_i(t) dt = 0(i=0,1,2,3...n) t1t2ϕ(t)φi(t)dt=0i=0,1,2,3...n
此函数称为完备正交函数集。

例如,三角函数集 1 , c o s ( Ω t ) , c o s ( 2 Ω t ) . . . c o s ( m Ω t ) . . . . s i n ( Ω t ) , s i n ( 2 Ω t ) , . . . , s i n ( 2 Ω t ) , . . . s i n ( n Ω t ) , . . . . {{1,cos(\Omega t),cos(2\Omega t)...cos(m\Omega t)....sin(\Omega t),sin(2\Omega t),...,sin(2\Omega t),...sin(n\Omega t),....}} 1cos(Ωt),cos(2Ωt)...cos(mΩt)....sin(Ωt),sin(2Ωt),...,sin(2Ωt),...sin(nΩt),....在区间
t 0 , t 0 + T t_0,t_0+T t0,t0+T)(式中T= 2 π Ω \frac{2\pi}{\Omega} Ω2π)组成正交函数集,而且是完备的正交函数集。
函数集{ s i n ( Ω t ) , s i n ( 2 Ω t ) , . . . s i n ( n Ω t ) sin(\Omega t),sin(2\Omega t),...sin(n\Omega t) sin(Ωt),sin(2Ωt),...sin(nΩt)}在区间( t 0 , t 0 + T t_0,t_0+T t0,t0+T)内也是正交函数集,但它是不完备的,因为还有许多函数,如 c o s ( Ω t ) , c o s ( 2 Ω t ) . . . cos(\Omega t),cos(2\Omega t)... cos(Ωt),cos(2Ωt)...也与此集中正交

*复函数集{ e j n Ω t e^{jn\Omega t} ejnΩt} ( n = 0 , ± 1 , ± 2... ) (n=0,\pm1,\pm2...) (n=0,±1,±2...)在区间( t 0 , t 0 + T t_0,t_0+T t0,t0+T)内是完备正交函数集,式中T= 2 π Ω \frac{2\pi}{\Omega} Ω2π,满足
∫ t 0 t 0 + T e j m Ω t ( e j n Ω t ) d t = ∫ t 0 t 0 + T e j ( m − n ) Ω t d t = { 0 , 当 m ≠ n T , 当 m = n \int_{t_0}^{t_0+T}e^{jm\Omega t}(e^{jn\Omega t}) dt = \int_{t_0}^{t_0+T}e^{j(m-n)\Omega t} dt =\begin{cases} {0 ,当m\neq n}\\ {T,当m=n} \end{cases} t0t0+TejmΩtejnΩtdt=t0t0+Tej(mn)Ωtdt={0,m̸=nT,m=n

信号分解为正交函数

设有n个函数 φ 1 ( t ) , φ 2 ( t ) , φ 3 ( t ) . . . φ n ( t ) {\varphi_1(t),\varphi_2(t),\varphi_3(t)...\varphi_n(t)} φ1(t)φ2(t)φ3(t)...φn(t)在区间( t 1 , t 2 t_1,t_2 t1,t2)构成一个正交函数函数空间。将任一函数f(t)用这n个正交函数的线性组合来表示,可表示为
f ( t ) ≈ C 1 φ 1 ( t ) + C 2 φ 2 ( t ) + . . . C n φ n ( t ) = ∑ j = 1 n C j φ j ( t ) f(t)\approx C_1\varphi_1(t)+C_2\varphi_2(t)+...C_n\varphi_n(t)=\sum_{j=1}^n C_j\varphi_j(t) f(t)C1φ1(t)+C2φ2(t)+...Cnφn(t)=j=1nCjφj(t)

推导过程繁琐,见书
结论:当n——> ∞ \infty 时, ε 2 ‾ \overline{\varepsilon^2} ε2=0, f ( t ) = ∑ j = 1 n C j φ j ( t ) f(t)=\sum_{j=1}^n C_j\varphi_j(t) f(t)=j=1nCjφj(t)
即函数f(t)在区间( t 1 , t 2 t_1,t_2 t1,t2)可分解为无穷多项正交函数之和。

傅里叶级数

周期信号
在这里插入图片描述
[引用自第一章]
周期的倒数称为该信号的频率
由上面结论可知,周期信号f(t)在区间( t 0 , t 0 + T t_0,t_0+T t0,t0+T)可以展开成完备正交信号空间中的无穷级数。如果完备的正交函数集是三角函数集或指数函数集,那么周期信号所展开的无穷级数就分别称为“三角傅里叶级数”或指数型傅里叶级数,统称傅里叶级数。
只有当满足狄里赫利条件时,才能展开成傅里叶级数。

注:狄利赫利条件:(1 )在一周期内,连续或只有有限个第一类间断点;(2)在一周期内,极大值和极小值的数目应是有限个;(3)在一周期内,信号是绝对可积的。

周期信号的分解

设有周期信号f(t),它的周期是T,角频率 Ω = 2 π F = 2 π T \Omega=2\pi F=\frac{2\pi}{T} Ω=2πF=T2π,它可以分解成
f ( t ) = a 0 2 + a 1 c o s ( Ω t ) + a 2 c o s ( 2 Ω t ) + . . . b 1 s i n ( Ω t ) + b 2 s i n ( 2 Ω t ) + . . f(t)=\frac{a_0}{2}+a_1cos(\Omega t)+a_2cos(2\Omega t)+...b_1sin(\Omega t)+b_2sin(2\Omega t)+.. f(t)=2a0+a1cos(Ωt)+a2cos(2Ωt)+...b1sin(Ωt)+b2sin(2Ωt)+..

= a 0 2 + ∑ n = 1 ∞ a n c o s ( n Ω t ) + ∑ n = 1 ∞ b n s i n ( n Ω t ) =\frac{a_0}{2}+\sum_{n=1}^{\infty}a_ncos(n\Omega t)+\sum_{n=1}^{\infty}b_nsin(n\Omega t) =2a0+n=1ancos(nΩt)+n=1bnsin(nΩt)
积分区间( t 0 , t 0 + T t_0,t_0+T t0,t0+T)可写为( − T 2 , T 2 -\frac{T}{2},\frac{T}{2} 2T,2T)或(0,T)。
傅里叶系数为
a n = 2 T ∫ − T 2 T 2 f ( t ) c o s ( n Ω t ) d t a_n=\frac{2}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)cos(n\Omega t)dt an=T22T2Tf(t)cos(nΩt)dt

b n = 2 T ∫ − T 2 T 2 f ( t ) s i n ( n Ω t ) d t b_n=\frac{2}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)sin(n\Omega t)dt bn=T22T2Tf(t)sin(nΩt)dt

关于傅里叶系数的推导

把级数中同频率项合并,可写成
f ( t ) = A 0 2 + ∑ n = 1 ∞ A n c o s ( n Ω t + φ n ) f(t)=\frac{A_0}{2}+\sum_{n=1}^{\infty}{A_ncos(n\Omega t+\varphi _n)} f(t)=2A0+n=1Ancos(nΩt+φn)
其中:
A 0 = a 0 A_0=a_0 A0=a0
A n = a n 2 + b n 2 A_n=\sqrt{ a_n^2+b_n^2 } An=an2+bn2
φ n = − a r c t a n b n a n \varphi _n=-arctan\frac{b_n}{a_n} φn=arctananbn

其中第一项 A 0 2 \frac{A_0}{2} 2A0常数项,它是周期信号中包含的直流分量;式中第二项 A 1 c o s ( Ω t + φ 1 ) A_1cos(\Omega t+\varphi _1) A1cos(Ωt+φ1称为基波一次谐波,它的角频率与原周期信号相同, A 1 A_1 A1基波振幅 φ 1 \varphi _1 φ1基波初相角;式中第三项 A 2 c o s ( 2 Ω t + φ 2 ) A_2cos(2\Omega t+\varphi _2) A2cos(2Ωt+φ2)称为二次谐波,它的频率是基波频率的二倍, A 2 A_2 A2二次谐波振幅 φ 2 \varphi _2 φ2是其初相角,依次类推还有三次,四次,…谐波,一般而言 A n c o s ( n Ω t + φ n ) A_ncos(n\Omega t+\varphi _n) Ancos(nΩt+φn)称为n次谐波, A n A_n Ann次谐波振幅 φ n \varphi _n φn是其初相角.

奇偶函数的傅里叶变换
傅里叶级数的指数形式

三角函数的傅里叶级数含义明显,但运算不便,故采用指数形式傅里叶级数
由于

c o s x = e j x + e − j x 2 cosx=\frac{e^{jx}+e^{-jx}}{2} cosx=2ejx+ejx
所以三角傅里叶级数可以写成
f ( t ) = A 0 2 + ∑ n = 1 ∞ A n 2 [ e j ( n Ω t + φ n ) + e − j ( n Ω t + φ n ) ] f(t)=\frac{A_0}{2}+\sum_{n=1}^{\infty}\frac{A_n}{2}[e^{j(n\Omega t+\varphi_n)}+e^{-j(n\Omega t+\varphi_n)}] f(t)=2A0+n=12An[ej(nΩt+φn)+ej(nΩt+φn)]

= A 0 2 + 1 2 ∑ n = 1 ∞ A n e j φ n e j n Ω t + 1 2 ∑ n = 1 ∞ A n e − j φ n e − j n Ω t =\frac{A_0}{2}+\frac{1}{2}\sum_{n=1}^{\infty}A_ne^{j\varphi_n}e^{jn\Omega t}+\frac{1}{2}\sum_{n=1}^{\infty}A_ne^{-j\varphi_n}e^{-jn\Omega t} =2A0+21n=1AnejφnejnΩt+21n=1AnejφnejnΩt

将第三项n用-n代替,考虑到 A n A_n An为偶函数, φ n \varphi_n φn为奇函数则上式转化为
f ( t ) = A 0 2 + 1 2 ∑ n = 1 ∞ A n e j φ n e j n Ω t + 1 2 ∑ n = 1 ∞ A n e − j φ n e − j n Ω t f(t)=\frac{A_0}{2}+\frac{1}{2}\sum_{n=1}^{\infty}A_ne^{j\varphi_n}e^{jn\Omega t}+\frac{1}{2}\sum_{n=1}^{\infty}A_ne^{-j\varphi_n}e^{-jn\Omega t} f(t)=2A0+21n=1AnejφnejnΩt+21n=1AnejφnejnΩt

= A 0 2 + 1 2 ∑ n = 1 ∞ A n e j φ n e j n Ω t + 1 2 ∑ n = − ∞ − 1 A n e j φ n e j n Ω t =\frac{A_0}{2}+\frac{1}{2}\sum_{n=1}^{\infty}A_ne^{j\varphi_n}e^{jn\Omega t }+\frac{1}{2}\sum_{n=-\infty}^{-1}A_ne^{j\varphi_n}e^{jn\Omega t} =2A0+21n=1AnejφnejnΩt+21n=1AnejφnejnΩt

A 0 A_0 A0可以写成 A 0 e j φ 0 e j n Ω t A_0e^{j\varphi_0}e^{jn\Omega t} A0ejφ0ejnΩt(其中 φ 0 \varphi_0 φ0=0),则上式可写为
f ( t ) = 1 2 ∑ n = − ∞ ∞ A n e j φ n e j n Ω t f(t)=\frac{1}{2}\sum_{n=-\infty}^{\infty}A_ne^{j\varphi_n}e^{jn\Omega t} f(t)=21n=AnejφnejnΩt

令复数量 1 2 A n e j φ n = ∣ F n ∣ e j φ n = F n \frac{1}{2}A_ne^{j\varphi_n}=|F_n|e^{j\varphi_n}=F_n 21Anejφn=Fnejφn=Fn,称其为复傅里叶系数,简称傅里叶系数,其模为 ∣ F n ∣ |F_n| Fn,相角为 φ n \varphi_n φn,则得傅里叶级数的指数形式为

f ( t ) = ∑ n = − ∞ ∞ F n e j n Ω t f(t)=\sum_{n=-\infty}^{\infty}F_ne^{jn\Omega t} f(t)=n=FnejnΩt

根据欧拉公式,傅里叶系数
F n = 1 2 A n e j φ n = 1 2 ( A n c o s φ n + j A n s i n φ n ) = 1 2 ( a n − j b n ) F_n=\frac{1}{2}A_ne^{j\varphi_n}=\frac{1}{2}(A_ncos\varphi_n+jA_nsin\varphi_n)=\frac{1}{2}(a_n-jb_n) Fn=21Anejφn=21(Ancosφn+jAnsinφn)=21(anjbn)

代入傅里叶级数得

F n = 1 T ∫ − T 2 T 2 f ( t ) c o s ( n Ω t ) d t − j 1 T ∫ − T 2 T 2 f ( t ) s i n Ω t ) d t F_n=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)cos(n\Omega t)dt-j\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)sin\Omega t)dt Fn=T12T2Tf(t)cos(nΩt)dtjT12T2Tf(t)sinΩt)dt

= 1 T ∫ − T 2 T 2 f ( t ) [ c o s ( n Ω t ) − j s i n Ω t ) ] d t =\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)[cos(n\Omega t)-jsin\Omega t)]dt =T12T2Tf(t)[cos(nΩt)jsinΩt)]dt

= 1 T ∫ − T 2 T 2 f ( t ) e − j n Ω t d t , n = n = 0 , ± 1 , ± 2... =\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)e^{-jn\Omega t}dt,n=n=0,\pm1,\pm2... =T12T2Tf(t)ejnΩtdt,n=n=0,±1,±2...

这就是求指数形式傅里叶级数的复系数 F n F_n Fn的公式
任意周期信号f(t)可分解为许多不同频率的虚指数信号( e j n Ω t e^{jn\Omega t} ejnΩt)之和,其各分量的复数幅度(或相量)为 F n F_n Fn.

周期信号的频谱

周期信号的频谱

周期信号可以分解成一系列正弦信号或虚指数信号之和

f ( t ) = A 0 2 + ∑ n = 1 ∞ A n c o s ( n Ω t + φ n ) f(t)=\frac{A_0}{2}+\sum_{n=1}^{\infty}{A_ncos(n\Omega t+\varphi _n)} f(t)=2A0+n=1Ancos(nΩt+φn)

f ( t ) = ∑ n = − ∞ ∞ F n e j n Ω t f(t)=\sum_{n=-\infty}^{\infty}F_ne^{jn\Omega t} f(t)=n=FnejnΩt

其中 F n = 1 2 A n e j φ n = ∣ F n ∣ e j φ n F_n=\frac{1}{2}A_ne^{j\varphi_n}=|F_n|e^{j\varphi_n} Fn=21Anejφn=Fnejφn.
以频率为横坐标,以各谐波的振幅 A n A_n An或虚指数函数的幅度 ∣ F n ∣ |F_n| Fn为纵坐标,可画出图像,称为幅度(振幅)频谱,简称为幅度频。图中每条数显代表该频率分量的幅度,称为谱线。连接各谱线顶点的曲线称为包络线,它反映了各分量幅度随频率变化的情况。
类似的,也可以画出各谐波初相角 φ n \varphi_n φn与频率(或角频率)的线图,称为相位频谱,简称相位谱。
在这里插入图片描述

周期矩形脉冲的频谱

设一幅度为1,脉冲宽度为 τ \tau τ的周期矩形脉冲,其周期为T。根据傅里叶级数的指数形式可求得

F n = 1 T ∫ − T 2 T 2 f ( t ) e − j n Ω t d t = 1 T ∫ − τ 2 τ 2 e − j n Ω t d t = 1 T e − j n Ω t − j n Ω ∣ − τ 2 τ 2 F_n=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)e^{-jn\Omega t}dt=\frac{1}{T}\int_{-\frac{\tau}{2}}^{\frac{\tau}{2}}e^{-jn\Omega t}dt=\frac{1}{T}\frac{e^{-jn\Omega t}}{-jn\Omega}|_{-\frac{\tau}{2}}^{\frac{\tau}{2}} Fn=T12T2Tf(t)ejnΩtdt=T12τ2τejnΩtdt=T1jnΩejnΩt2τ2τ

在这里插入图片描述
上式 1 T e − j n Ω t − j n Ω ∣ − τ 2 τ 2 \frac{1}{T}\frac{e^{-jn\Omega t}}{-jn\Omega}|_{-\frac{\tau}{2}}^{\frac{\tau}{2}} T1jnΩejnΩt2τ2τ转化为 2 T s i n ( n Ω τ 2 ) n Ω = τ T s i n ( n Ω τ 2 ) n Ω τ 2 , n = 0 , ± 1 , ± 2... \frac{2}{T}\frac{sin(\frac{n\Omega \tau}{2})}{n\Omega}=\frac{\tau}{T}\frac{sin(\frac{n\Omega \tau}{2})}{\frac{n\Omega \tau}{2}},n=0,\pm1,\pm2... T2nΩsin(2nΩτ)=Tτ2nΩτsin(2nΩτ),n=0,±1,±2...
由于 Ω = 2 π T \Omega =\frac{2\pi}{T} Ω=T2π上式也可写为 F n = τ T s i n ( n π τ T ) n π τ T , n = 0 , ± 1 , ± 2... F_n=\frac{\tau}{T}\frac{sin(\frac{n\pi \tau}{T})}{\frac{n\pi \tau}{T}},n=0,\pm1,\pm2... Fn=TτTnπτsin(Tnπτ),n=0,±1,±2...
由取样函数 S a ( x ) = s i n x x Sa(x)=\frac{sinx}{x} Sa(x)=xsinx
可得 F n = τ T S a ( n π τ T ) = τ T S a ( n Ω τ 2 ) , n = 0 , ± 1 , ± 2... F_n=\frac{\tau}{T}Sa(\frac{n\pi \tau}{T})=\frac{\tau}{T}Sa(\frac{n\Omega \tau}{2}),n=0,\pm1,\pm2... Fn=TτSa(Tnπτ)=TτSa(2nΩτ),n=0,±1,±2...
所以这类周期性矩形脉冲的指数形式傅里叶级数展开式为
f ( t ) = ∑ n = − ∞ ∞ F n e j n Ω t = τ T ∑ n = − ∞ ∞ S a ( n π τ T ) e j n Ω t f(t)=\sum_{n=-\infty}^{\infty} {F_ne^{jn\Omega t}}=\frac{\tau}{T} \sum_{n=-\infty}^{\infty} {Sa(\frac{n\pi \tau}{T})e^{jn\Omega t}} f(t)=n=FnejnΩt=Tτn=Sa(Tnπτ)ejnΩt

周期信号的功率

平均功率

P = 1 T ∫ − T 2 T 2 f 2 ( t ) d t P=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f^2(t)dt P=T12T2Tf2(t)dt

将f(t)展开得

P = 1 T ∫ − T 2 T 2 [ A 0 2 + ∑ n = 1 ∞ A n c o s ( n Ω t + φ n ) ] 2 d t P=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}[\frac{A_0}{2}+\sum_{n=1}^{\infty}{A_ncos(n\Omega t+\varphi _n)}]^2dt P=T12T2T[2A0+n=1Ancos(nΩt+φn)]2dt

展开后化简,正交式为0,最后消得
P = 1 T ∫ − T 2 T 2 f 2 ( t ) d t = ( A 0 2 ) 2 + ∑ n = 1 ∞ 1 2 A n 2 P=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f^2(t)dt=(\frac{A_0}{2})^2+\sum_{n=1}^{\infty} \frac{1}{2}A^2_n P=T12T2Tf2(t)dt=(2A0)2+n=121An2

由于 ∣ F n ∣ = 1 2 A n |F_n|=\frac{1}{2}A_n Fn=21An
所以上式可以改为
P = 1 T ∫ − T 2 T 2 f 2 ( t ) d t = ∣ F 0 ∣ 2 + 2 ∑ n = 1 ∞ ∣ F n ∣ 2 = ∑ n = − ∞ ∞ ∣ F n ∣ 2 P=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f^2(t)dt=|F_0|^2+2\sum_{n=1}^{\infty}|F_n|^2=\sum_{n=-\infty}^{\infty}|F_n|^2 P=T12T2Tf2(t)dt=F02+2n=1Fn2=n=Fn2

上式称为帕斯瓦尔恒等式,表明对于周期信号,在时域中求得的信号功率与在频域中求得的相同。

非周期信号的频谱

傅里叶变换

非周期信号
当周期T区域无限大时,相邻谱线的间隔 Ω \Omega Ω趋于无穷小,从而信号的频谱成为连续频谱。同时,各频率分量的幅度也都趋近于无穷小,不过这些无穷小量之间仍然存在一定的比例关系。所以为了描述非周期信号的频谱特性,引入频谱密度的概念。令
F ( j ω ) = lim ⁡ T → ∞ F n 1 / T = lim ⁡ T → ∞ F n T F(j\omega)=\lim\limits_{T \rightarrow \infty} \frac{F_n}{1/T}=\lim\limits_{T \rightarrow \infty} F_nT F(jω)=Tlim1/TFn=TlimFnT
由之前推导可得

F n T = ∫ − T 2 T 2 f ( t ) e − j n Ω t d t F_nT=\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)e^{-jn\Omega t}dt FnT=2T2Tf(t)ejnΩtdt

f ( t ) = ∑ n = − ∞ ∞ F n T e j n Ω t ⋅ 1 T f(t)=\sum_{n=-\infty}^{\infty}F_nTe^{jn\Omega t}\cdot \frac{1}{T} f(t)=n=FnTejnΩtT1

T → ∞ T\rightarrow \infty T时, Ω \Omega Ω趋近于无穷小,取 d ω d\omega dω n Ω n\Omega nΩ是变量,当 Ω \Omega Ω趋于0时,它成为连续变量,取为 ω \omega ω

F ( j ω ) = lim ⁡ T → ∞ F n T = ∫ − ∞ ∞ f ( t ) e − j ω t d t ( 1 ) F(j\omega)=\lim\limits_{T \rightarrow \infty} F_nT=\int_{- \infty}^{ \infty}f(t)e^{-j\omega t}dt (1) F(jω)=TlimFnT=f(t)ejωtdt(1)

f ( t ) = 1 2 π ∫ − ∞ − ∞ F ( j ω ) e j ω t d ω ( 2 ) f(t)=\frac{1}{2\pi}\int_{- \infty}^{-\infty}F(j\omega)e^{j\omega t}d\omega(2) f(t)=2π1F(jω)ejωtdω(2)

(1)式称为傅里叶的变换(积分),(2)式称为傅里叶的逆变换, F ( j ω ) F(j\omega) F(jω)称为 f ( t ) f(t) f(t)的频谱密度函数或者频谱函数
F ( j ω ) = F [ f ( t ) ] F(j\omega)=\mathscr{F}[f(t)] F(jω)=F[f(t)]
f ( t ) = F − 1 [ F ( j ω ) ] f(t)=\mathscr{F}^{-1}[F(j\omega)] f(t)=F1[F(jω)]
还可以简记为

f ( t ) ← → F ( j ω ) f(t)\leftarrow\rightarrow F(j\omega) f(t)F(jω)

频谱密度函数 F ( j ω ) = ∣ F ( j ω ) ∣ e j φ ( ω ) = R ( ω ) + j X ( ω ) F(j\omega)=|F(j\omega)|e^{j\varphi(\omega)}=R(\omega)+jX(\omega) F(jω)=F(jω)ejφ(ω)=R(ω)+jX(ω)
逆变换也可以写成三角形式
f ( t ) = 1 π ∫ 0 ∞ ∣ F ( j ω ) ∣ c o s [ ω t + φ ( ω ) ] d ω f(t)=\frac{1}{\pi}\int_{0}^{\infty}|F(j\omega)|cos[\omega t +\varphi(\omega)]d\omega f(t)=π10F(jω)cos[ωt+φ(ω)]dω
傅里叶变换的充分条件是在无限区间内 f ( t ) f(t) f(t)绝对可积,即
∫ − ∞ ∞ ∣ f ( t ) ∣ d t &lt; ∞ \int_{-\infty}^{\infty} |f(t)|dt&lt;\infty f(t)dt<

常见基本信号的傅里叶变换

1.门函数 g τ ( t ) g_\tau(t) gτ(t)
宽度为 τ \tau τ,幅度为1

g τ ( t ) = { 1 , ∣ t ∣ &lt; τ 2 0 , ∣ t ∣ &gt; τ 2 g_\tau(t)=\begin{cases} {1,|t|&lt;\frac{\tau}{2}}\\ {0,|t|&gt;\frac{\tau}{2}} \end{cases} gτ(t)={1,t<2τ0,t>2τ
频谱函数为
F ( j ω ) = ∫ − ∞ ∞ f ( t ) e − j ω t d t = ∫ − τ 2 τ 2 1 ⋅ e − j ω t d t = e − j ω τ 2 − e j ω τ 2 − j ω F(j\omega)=\int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt=\int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} 1\cdot e^{-j\omega t}dt=\frac{e^{-j\frac{\omega \tau}{2}}-e^{j\frac{\omega \tau}{2}}}{-j\omega} F(jω)=f(t)ejωtdt=2τ2τ1ejωtdt=jωej2ωτej2ωτ

= 2 s i n ( ω τ 2 ) ω = τ S a ( ω τ 2 ) =\frac{2sin(\frac{\omega \tau}{2})}{\omega}=\tau Sa(\frac{\omega\tau}{2}) =ω2sin(2ωτ)=τSa(2ωτ)

2.单边指数函数 e − α t ε ( t ) e^{-\alpha t}\varepsilon(t) eαtε(t)

F ( j ω ) = ∫ − ∞ ∞ f ( t ) e − j ω t d t = ∫ 0 ∞ e − α t ⋅ e − j ω t d t = 1 α + j ω , α &gt; 0 F(j\omega)=\int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt=\int_{0}^{\infty}e^{-\alpha t}\cdot e^{-j\omega t}dt=\frac{1}{\alpha+j\omega},\alpha&gt;0 F(jω)=f(t)ejωtdt=0eαtejωtdt=α+jω1,α>0

3.双边指数函数 e − α ∣ t ∣ e^{-\alpha |t|} eαt
F ( j ω ) = ∫ − ∞ 0 e α t ⋅ e − j ω t d t + ∫ 0 ∞ e − α t ⋅ e − j ω t d t F(j\omega)=\int_{-\infty}^{0} e^{\alpha t}\cdot e^{-j\omega t}dt+\int_{0}^{\infty}e^{-\alpha t}\cdot e^{-j\omega t}dt F(jω)=0eαtejωtdt+0eαtejωtdt

= 1 α − j ω + 1 α + j ω = 2 α α 2 + ω 2 =\frac{1}{\alpha-j\omega}+\frac{1}{\alpha+j\omega}=\frac{2\alpha}{\alpha^2+\omega^2} =αjω1+α+jω1=α2+ω22α

奇异函数的傅里叶变换

1.冲激函数 δ ( t ) \delta(t) δ(t)
F [ δ ( t ) ] = ∫ − ∞ ∞ δ ( t ) e − j ω t d t = 1 \mathscr{F}[\delta(t)]=\int_{-\infty}^{\infty}\delta(t)e^{-j\omega t}dt=1 F[δ(t)]=δ(t)ejωtdt=1
2.冲激函数导数 δ ′ ( t ) \delta\prime(t) δ(t)
在这里插入图片描述
F [ δ ′ ( t ) ] = j ω \mathscr{F}[\delta\prime(t)]=j\omega F[δ(t)]=jω

3.单位直流信号1
f ( t ) = e − α ∣ t ∣ f(t)=e^{-\alpha |t|} f(t)=eαt

F ( j ω ) = 2 α α 2 + ω 2 F(j\omega)=\frac{2\alpha}{\alpha^2+\omega^2} F(jω)=α2+ω22α
α − &gt; 0 \alpha-&gt;0 α>0

lim ⁡ α − &gt; 0 ∫ − ∞ ∞ 2 α α 2 + ω 2 d ω = lim ⁡ α − &gt; 0 ∫ − ∞ ∞ 2 1 + ( ω α ) 2 d ( ω α ) = = lim ⁡ α − &gt; 0 2 a r c t a n ( ω α ) ∣ − ∞ ∞ = 2 π \lim\limits_{\alpha-&gt;0}\int_{-\infty}^{\infty} \frac{2\alpha}{\alpha^2+\omega^2}d\omega=\lim\limits_{\alpha-&gt;0}\int_{-\infty}^{\infty} \frac{2}{1+(\frac{\omega}{\alpha})^2}d(\frac{\omega}{\alpha})==\lim\limits_{\alpha-&gt;0}2arctan(\frac{\omega}{\alpha})|_{-\infty}^{\infty}=2\pi α>0limα2+ω22αdω=α>0lim1+(αω)22d(αω)==α>0lim2arctan(αω)=2π

所以 F ( j ω ) = lim ⁡ α − &gt; 0 2 α α 2 + ω 2 = 2 π δ ( ω ) F(j\omega)=\lim\limits_{\alpha-&gt;0} \frac{2\alpha}{\alpha^2+\omega^2}=2\pi \delta(\omega) F(jω)=α>0limα2+ω22α=2πδ(ω)

4.符号函数 s g n ( t ) sgn(t) sgn(t)
s g n ( t ) = { − 1 , t &lt; 0 0 , t = 0 1 , t &gt; 0 sgn(t)=\begin{cases} {-1,t&lt;0}\\ {0,t=0}\\{1,t&gt;0} \end{cases} sgn(t)=1,t<00,t=01,t>0
F [ s g n ( t ) ] = 2 j ω \mathscr{F}[sgn(t)]=\frac{2}{j\omega} F[sgn(t)]=jω2

5.阶跃函数 ε ( t ) \varepsilon(t) ε(t)
阶跃函数可以看成是幅度为 1 2 \frac{1}{2} 21的直流信号和幅度为 1 2 \frac{1}{2} 21的符号函数之和
ε ( t ) = 1 2 + 1 2 s g n ( t ) \varepsilon(t)=\frac{1}{2}+\frac{1}{2}sgn(t) ε(t)=21+21sgn(t)
对上面进行傅里叶变换
F [ ε ( t ) ] = π δ ( ω ) + 1 j ω \mathscr{F}[\varepsilon(t)]=\pi\delta(\omega)+\frac{1}{j\omega} F[ε(t)]=πδ(ω)+jω1

傅里叶变换的性质

傅里叶变换
f ( t ) ← → F ( j ω ) f(t)\leftarrow\rightarrow F(j\omega) f(t)F(jω)

时域和频域的关系
F ( j ω ) = F [ f ( t ) ] = ∫ − ∞ ∞ f ( t ) e − j ω t d t F(j\omega)=\mathscr{F}[f(t)]=\int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt F(jω)=F[f(t)]=f(t)ejωtdt

f ( t ) = F − 1 [ F ( j ω ) ] = 1 2 π ∫ − ∞ ∞ F ( j ω ) e j ω t d ω f(t)=\mathscr{F}^{-1}[F(j\omega)]=\frac{1}{2\pi}\int_{-\infty}^{\infty}F(j\omega)e^{j\omega t}d\omega f(t)=F1[F(jω)]=2π1F(jω)ejωtdω

一.线性

f 1 ( t ) ← → F 1 ( j ω ) f_1(t)\leftarrow\rightarrow F_1(j\omega) f1(t)F1(jω)

f 2 ( t ) ← → F 2 ( j ω ) f_2(t)\leftarrow\rightarrow F_2(j\omega) f2(t)F2(jω) 则对任意常数 a 1 a_1 a1 a 2 a_2 a2,有
a 1 f 1 ( t ) + a 2 f 2 ( t ) = a 1 F 1 ( j ω ) + a 2 F 2 ( j ω ) a_1f_1(t)+a_2f_2(t)=a_1F_1(j\omega)+a_2F_2(j\omega) a1f1(t)+a2f2(t)=a1F1(jω)+a2F2(jω)

线性性质有两个含义:
(1)齐次性
(2)可加性
在求 ε ( t ) \varepsilon(t) ε(t)的频谱函数时已经用了线性性质

二.奇偶性

F ( j ω ) = ∫ − ∞ ∞ f ( t ) e − j ω t d t = ∫ − ∞ ∞ f ( t ) c o s ( ω t ) d t − ∫ − ∞ ∞ f ( t ) s i n ( ω t ) d t F(j\omega)=\int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt=\int_{-\infty}^{\infty} f(t)cos(\omega t)dt-\int_{-\infty}^{\infty} f(t)sin(\omega t)dt F(jω)=f(t)ejωtdt=f(t)cos(ωt)dtf(t)sin(ωt)dt

= R ( ω ) + j X ( ω ) = ∣ F ( j ω ) ∣ e j φ ( ω ) =R(\omega)+jX(\omega)=|F(j\omega)|e^{j\varphi(\omega)} =R(ω)+jX(ω)=F(jω)ejφ(ω)

三.对称性

f ( t ) ← → F ( j ω ) f(t)\leftarrow\rightarrow F(j\omega) f(t)F(jω)

F ( j t ) ← → 2 π f ( − ω ) F(jt)\leftarrow\rightarrow 2\pi f(-\omega) F(jt)2πf(ω)

证明:
f ( t ) = = 1 2 π ∫ − ∞ ∞ F ( j ω ) e j ω t d ω f(t)==\frac{1}{2\pi}\int_{-\infty}^{\infty}F(j\omega)e^{j\omega t}d\omega f(t)==2π1F(jω)ejωtdω
f ( − t ) = = 1 2 π ∫ − ∞ ∞ F ( j ω ) e − j ω t d ω f(-t)==\frac{1}{2\pi}\int_{-\infty}^{\infty}F(j\omega)e^{-j\omega t}d\omega f(t)==2π1F(jω)ejωtdω
t t t换为 ω \omega ω, ω \omega ω换为 t t t
f ( − ω ) = = 1 2 π ∫ − ∞ ∞ F ( j t ) e − j ω t d ω f(-\omega)==\frac{1}{2\pi}\int_{-\infty}^{\infty}F(jt)e^{-j\omega t}d\omega f(ω)==2π1F(jt)ejωtdω
2 π f ( − ω ) = = ∫ − ∞ ∞ F ( j t ) e − j ω t d ω 2\pi f(-\omega)==\int_{-\infty}^{\infty}F(jt)e^{-j\omega t}d\omega 2πf(ω)==F(jt)ejωtdω

例1:
δ ( t ) ← → 1 \delta(t)\leftarrow\rightarrow 1 δ(t)1
1 ← → 2 π δ ( ω ) 1\leftarrow\rightarrow 2\pi \delta(\omega) 12πδ(ω)

例2:
t t t 1 t \frac{1}{t} t1的频谱函数
1. t t t
δ ′ ( t ) ← → j ω \delta\prime(t)\leftarrow\rightarrow j\omega δ(t)jω
由对称性可得
j t ← → 2 π δ ′ ( − ω ) jt\leftarrow\rightarrow 2\pi \delta\prime(-\omega) jt2πδ(ω)
所以 t ← → j 2 π δ ′ ( ω ) t\leftarrow\rightarrow j2\pi \delta\prime(\omega) tj2πδ(ω)

2. 1 t \frac{1}{t} t1
s g n ( t ) ← → 2 j ω sgn(t)\leftarrow\rightarrow \frac{2}{j\omega} sgn(t)jω2
由对称性
2 j t ← → 2 π s g n ( − ω ) \frac{2}{jt}\leftarrow\rightarrow 2\pi sgn(-\omega) jt22πsgn(ω)
1 t ← → − j π s g n ( ω ) \frac{1}{t}\leftarrow\rightarrow -j\pi sgn(\omega) t1jπsgn(ω)

四.尺度变换

f ( t ) ← → F ( j ω ) f(t)\leftarrow\rightarrow F(j\omega) f(t)F(jω)
则对于实常数a(a ≠ \neq ̸= 0),有
f ( a t ) ← → 1 ∣ a ∣ F ( j ω a ) f(at)\leftarrow\rightarrow \frac{1}{|a|}F(j\frac{\omega}{a}) f(at)a1F(jaω)

证明
F [ f ( a t ) ] = ∫ − ∞ ∞ f ( a t ) e − j ω t d t \mathscr{F}[f(at)]=\int_{-\infty}^{\infty}f(at)e^{-j\omega t}dt F[f(at)]=f(at)ejωtdt
令x=at,t= x a , d t = 1 a d x \frac{x}{a},dt=\frac{1}{a}dx ax,dt=a1dx
当a>0时
F [ f ( a t ) ] = ∫ − ∞ ∞ f ( x ) e − j ω x a 1 a d x = 1 a ∫ − ∞ ∞ f ( x ) e − j ω a x d x = 1 a F ( j ω a ) \mathscr{F}[f(at)]=\int_{-\infty}^{\infty}f(x)e^{-j\omega\frac{x}{a}}\frac{1}{a}dx=\frac{1}{a}\int_{-\infty}^{\infty}f(x)e^{-j\frac{\omega}{a}x}dx=\frac{1}{a}F(j\frac{\omega}{a}) F[f(at)]=f(x)ejωaxa1dx=a1f(x)ejaωxdx=a1F(jaω)
当a<0时
F [ f ( a t ) ] = ∫ − ∞ ∞ f ( x ) e − j ω x a 1 a d x = − 1 a ∫ − ∞ ∞ f ( x ) e − j ω a x d x = − 1 a F ( j ω a ) \mathscr{F}[f(at)]=\int_{-\infty}^{\infty}f(x)e^{-j\omega\frac{x}{a}}\frac{1}{a}dx=-\frac{1}{a}\int_{-\infty}^{\infty}f(x)e^{-j\frac{\omega}{a}x}dx=-\frac{1}{a}F(j\frac{\omega}{a}) F[f(at)]=f(x)ejωaxa1dx=a1f(x)ejaωxdx=a1F(jaω)

五.时移特性

f ( t ) ← → F ( j ω ) f(t)\leftarrow\rightarrow F(j\omega) f(t)F(jω) t 0 t_0 t0为常数,则有 f ( t ± t 0 ) ← → e ± j ω t 0 F ( j ω ) f(t\pm t_0)\leftarrow\rightarrow e^{\pm j\omega t_0}F(j\omega) f(t±t0)e±jωt0F(jω)

证明:
f ( t ) ← → F ( j ω ) f(t)\leftarrow\rightarrow F(j\omega) f(t)F(jω),则延迟信号的傅里叶变换可以写成
F [ f ( t − t 0 ) ] = ∫ − ∞ ∞ f ( t − t 0 ) e − j ω t d t \mathscr{F}[f(t-t_0)]=\int_{-\infty}^{\infty}f(t-t_0)e^{-j\omega t}dt F[f(tt0)]=f(tt0)ejωtdt
x = t − t 0 x=t-t_0 x=tt0,则上式写成
F [ f ( x ) ] = ∫ − ∞ ∞ f ( x ) e − j ω ( x + t 0 ) d x = e − j ω t 0 ∫ − ∞ ∞ f ( x ) e − j ω x d x = e − j ω t 0 F ( j ω ) \mathscr{F}[f(x)]=\int_{-\infty}^{\infty}f(x)e^{-j\omega (x+t_0)}dx=e^{-j\omega t_0}\int_{-\infty}^{\infty}f(x)e^{-j\omega x}dx=e^{-j\omega t_0}F(j\omega) F[f(x)]=f(x)ejω(x+t0)dx=ejωt0f(x)ejωxdx=ejωt0F(jω)
同理可得
f ( t + t 0 ) ← → e j ω t 0 F ( j ω ) f(t+ t_0)\leftarrow\rightarrow e^{ j\omega t_0}F(j\omega) f(t+t0)ejωt0F(jω)
时移和尺度变换结合

f ( a t − b ) ← → 1 ∣ a ∣ e − j b a ω F ( j ω a ) f(at - b)\leftarrow\rightarrow \frac{1}{|a|}e^{ -j\frac{b}{a}\omega }F(j\frac{\omega}{a}) f(atb)a1ejabωF(jaω)

六.频移特性

f ( t ) ← → F ( j ω ) f(t)\leftarrow\rightarrow F(j\omega) f(t)F(jω) ω 0 \omega_0 ω0为常数,则
f ( t ) e ± j ω 0 t ← → F [ j ( ω ± ω 0 ) ] f(t)e^{\pm j\omega_0 t}\leftarrow\rightarrow F[j(\omega\pm \omega_0)] f(t)e±jω0tF[j(ω±ω0)]

七.卷积定理

时域卷积定理(时域卷积,频域相乘)

f 1 ( t ) ← → F 1 ( j ω ) f_1(t)\leftarrow\rightarrow F_1(j\omega) f1(t)F1(jω) f 2 ( t ) ← → F 2 ( j ω ) f_2(t)\leftarrow\rightarrow F_2(j\omega) f2(t)F2(jω) f 1 ( t ) ∗ f 2 ( t ) ← → F 1 ( j ω ) F 2 ( j ω ) f_1(t)*f_2(t)\leftarrow\rightarrow F_1(j\omega)F_2(j\omega) f1(t)f2(t)F1(jω)F2(jω)

频域卷积定理

f 1 ( t ) ← → F 1 ( j ω ) f_1(t)\leftarrow\rightarrow F_1(j\omega) f1(t)F1(jω) f 2 ( t ) ← → F 2 ( j ω ) f_2(t)\leftarrow\rightarrow F_2(j\omega) f2(t)F2(jω) f 1 ( t ) f 2 ( t ) ← → 1 2 π F 1 ( j ω ) ∗ F 2 ( j ω ) f_1(t)f_2(t) \leftarrow\rightarrow \frac{1}{2\pi}F_1(j\omega)*F_2(j\omega) f1(t)f2(t)2π1F1(jω)F2(jω)

八.时域微分和积分

f ( n ) ( t ) = d n f ( t ) d t n f^{(n)}(t)=\frac{d^nf(t)}{dt^n} f(n)(t)=dtndnf(t) f ( − 1 ) ( t ) = ∫ − ∞ t f ( x ) d x f^{(-1)}(t)=\int_{-\infty}^{t}f(x)dx f(1)(t)=tf(x)dx

时域微分(定理)

f ( t ) ← → F ( j ω ) f(t)\leftarrow\rightarrow F(j\omega) f(t)F(jω)
f ( n ) ( t ) ← → ( j ω ) n F ( j ω ) f^{(n)}(t)\leftarrow\rightarrow(j\omega)^nF(j\omega) f(n)(t)(jω)nF(jω)

时域积分(定理)

f ( t ) ← → F ( j ω ) f(t)\leftarrow\rightarrow F(j\omega) f(t)F(jω) f ( − 1 ) ( t ) ← → π F ( 0 ) δ ( ω ) + F ( j ω ) j ω f^{(-1)}(t) \leftarrow\rightarrow\pi F(0)\delta(\omega)+\frac{F(j\omega)}{j\omega} f(1)(t)πF(0)δ(ω)+jωF(jω) 如果F(0)=0,则上式写成 f ( − 1 ) ( t ) ← → F ( j ω ) j ω f^{(-1)}(t) \leftarrow\rightarrow\frac{F(j\omega)}{j\omega} f(1)(t)jωF(jω)

九.频域微分和积分


F ( n ) ( j ω ) = d n F ( j ω ) d ω n F^{(n)}(j\omega) =\frac{ d^nF(j\omega)}{d\omega^n} F(n)(jω)=dωndnF(jω) F − 1 ( j ω ) = ∫ − ∞ ω F ( j x ) d x F^{-1}(j\omega)=\int_{-\infty}^{\omega}F(jx)dx F1(jω)=ωF(jx)dx

频域微分

f ( t ) ← → F ( j ω ) f(t)\leftarrow\rightarrow F(j\omega) f(t)F(jω)
( − j t ) n f ( t ) ← → F ( n ) ( j ω ) (-jt)^nf(t)\leftarrow\rightarrow F^{(n)}(j\omega) (jt)nf(t)F(n)(jω)

频域积分

f ( t ) ← → F ( j ω ) f(t)\leftarrow\rightarrow F(j\omega) f(t)F(jω) π f ( 0 ) δ ( t ) + f ( t ) − j t ← → F ( − 1 ) ( j ω ) \pi f(0)\delta(t) + \frac{f(t)}{-jt}\leftarrow\rightarrow F^{(-1)}(j\omega) πf(0)δ(t)+jtf(t)F(1)(jω) 式中

f ( 0 ) = 1 2 π ∫ − ∞ ∞ F ( j ω ) d ω f(0)=\frac{1}{2\pi}\int_{-\infty}^{\infty}F(j\omega)d\omega f(0)=2π1F(jω)dω
如果 f ( 0 ) = 0 f(0)=0 f(0)=0,则有 f ( t ) − j t ← → F ( − 1 ) ( j ω ) \frac{f(t)}{-jt}\leftarrow\rightarrow F^{(-1)}(j\omega) jtf(t)F(1)(jω)

十.相关定理


f 1 ( t ) ← → F 1 ( j ω ) f_1(t)\leftarrow\rightarrow F_1(j\omega) f1(t)F1(jω)
f 2 ( t ) ← → F 2 ( j ω ) f_2(t)\leftarrow\rightarrow F_2(j\omega) f2(t)F2(jω)

R 12 ( τ ) = ∫ − ∞ ∞ f 1 ( t ) f 2 ( t − τ ) d t R_{12}(\tau)=\int_{-\infty}^{\infty} f_1(t)f_2(t-\tau)dt R12(τ)=f1(t)f2(tτ)dt
R 21 ( τ ) = ∫ − ∞ ∞ f 1 ( t − τ ) f 2 ( t ) d t R_{21}(\tau)=\int_{-\infty}^{\infty} f_1(t-\tau)f_2(t)dt R21(τ)=f1(tτ)f2(t)dt

F [ R 12 ( τ ) ] = F 1 ( j ω ) F 2 ∗ ( j ω ) \mathscr{F}[R_{12}(\tau)]=F_1(j\omega)F_2^*(j\omega) F[R12(τ)]=F1(jω)F2(jω)
F [ R 21 ( τ ) ] = F 1 ∗ ( j ω ) F 2 ( j ω ) \mathscr{F}[R_{21}(\tau)]=F_1^*(j\omega)F_2(j\omega) F[R21(τ)]=F1(jω)F2(jω)

f 1 ( t ) = f 2 ( t ) = f ( t ) f_1(t)=f_2(t)=f(t) f1(t)=f2(t)=f(t),则

F [ R ( τ ) ] = [ F ( j ω ) ] 2 \mathscr{F}[R(\tau)]=[F(j\omega)]^2 F[R(τ)]=[F(jω)]2
即它的傅里叶变换等于原信号幅度谱的平方

能量谱和功率谱

能量谱
E = ∫ − ∞ ∞ f 2 ( t ) d t E=\int_{-\infty}^{\infty}f^2(t)dt E=f2(t)dt
E = ∫ − ∞ ∞ f 2 ( t ) d t = ∫ − ∞ ∞ f ( t ) [ 1 2 π ∫ − ∞ ∞ F ( j ω ) e j ω t d ω ] d t = 1 2 π ∫ − ∞ ∞ F ( j ω ) [ ∫ − ∞ ∞ f ( t ) e j ω t d t ] d ω = 1 2 π ∫ − ∞ ∞ F ( j ω ) F ( − j ω ) d ω E=\int_{-\infty}^{\infty}f^2(t)dt=\int_{-\infty}^{\infty} f(t)[\frac{1}{2\pi}\int_{-\infty}^{\infty}F(j\omega)e^{j\omega t}d\omega]dt=\frac{1}{2\pi}\int_{-\infty}^{\infty}F(j\omega) [\int_{-\infty}^{\infty}f(t)e^{j\omega t}dt]d\omega=\frac{1}{2\pi}\int_{-\infty}^{\infty}F(j\omega)F(-j\omega)d\omega E=f2(t)dt=f(t)[2π1F(jω)ejωtdω]dt=2π1F(jω)[f(t)ejωtdt]dω=2π1F(jω)F(jω)dω

E = 1 2 π ∫ − ∞ ∞ ∣ F ( j ω ) ∣ 2 d ω = 1 2 π ∫ − ∞ ∞ E ( ω ) d ω E=\frac{1}{2\pi}\int_{-\infty}^{\infty}|F(j\omega)|^2d\omega=\frac{1}{2\pi}\int_{-\infty}^{\infty}\mathscr{E}(\omega)d\omega E=2π1F(jω)2dω=2π1E(ω)dω

E ( ω ) = ∣ F ( j ω ) ∣ 2 \mathscr{E}(\omega)=|F(j\omega)|^2 E(ω)=F(jω)2

功率谱
P = P= P=

周期信号的傅里叶变换

LTI系统的频域分析

取样定理

序列的傅里叶分析

离散傅里叶变换及其性质

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值