判断一个点相对于三角形的位置(借助向量)

本文介绍了一种判断点是否位于三角形内部的算法,通过叉乘判断点与三角形各边的关系,确保点与三角形顶点在各边同侧。关键步骤包括计算三角形方向和点相对于各边的位置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基本思路

在这里插入图片描述
如图,点P在三角形ABC内部,可以通过以下三个条件判断:

点P和点C在直线AB同侧
点P和点B在直线AC同侧
点P和点A在直线BC同侧

如果以上三个条件同时满足,则点P在三角形ABC内部。

下面将会用到叉乘这个数学工具来确定一个点在直线的哪一侧。

算法实现

三角形的三个顶点是转着来的,算一次就行了。比如,在上图中,点C在直线AB左侧,点B在直线CA的左侧,点A在直接BC的左侧。所以,第一步是先计算三角形的方向:

float signOfTrig = (b.x - a.x)*(c.y - a.y) - (b.y - a.y)*(c.x - a.x);

注意这样一下子写出来不太容易看明白,但是如果看成向量AB和向量AC叉乘之后的Z坐标就好懂的多了。

再分别计算P在AB、CA、BC的哪一侧:

float signOfAB = (b.x - a.x)*(p.y - a.y) - (b.y - a.y)*(p.x - a.x); 
float signOfCA = (a.x - c.x)*(p.y - c.y) - (a.y - c.y)*(p.x - c.x); 
float signOfBC = (c.x - b.x)*(p.y - c.y) - (c.y - b.y)*(p.x - c.x);

最后判断它们是否在同一侧:

boolean d1 = (signOfAB * signOfTrig > 0); 
boolean d2 = (signOfCA * signOfTrig > 0); 
boolean d3 = (signOfBC * signOfTrig > 0); 
println(d1 && d1 && d3);
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值