AlexNet网络模型

AlexNet 是一个深度卷积神经网络,由 Alex Krizhevsky、Ilya Sutskever 和 Geoffrey Hinton 在 2012 年的 ImageNet 大规模视觉识别挑战赛(ILSVRC)中首次提出并获得了显著的成功。它是深度学习历史上一个里程碑式的模型,对后来的深度学习和计算机视觉研究产生了深远的影响。

以下是 AlexNet 的主要特点和架构:

架构

  1. 输入层:接受 224x224 的 RGB 图像(3 个通道)。

  2. 第一个卷积层

    • 卷积核大小:11x11
    • 步长(stride):4
    • 输出通道数:96
    • 使用 ReLU 激活函数
    • 使用局部响应归一化(Local Response Normalization)
  3. 第一个池化层

    • 大小:3x3
    • 步长:2
  4. 第二个卷积层

    • 卷积核大小:5x5
    • 输出通道数:256
    • 使用 ReLU 激活函数
    • 使用局部响应归一化
  5. 第二个池化层

    • 大小:3x3
    • 步长:2
  6. 第三个卷积层

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值