AlexNet 是一个深度卷积神经网络,由 Alex Krizhevsky、Ilya Sutskever 和 Geoffrey Hinton 在 2012 年的 ImageNet 大规模视觉识别挑战赛(ILSVRC)中首次提出并获得了显著的成功。它是深度学习历史上一个里程碑式的模型,对后来的深度学习和计算机视觉研究产生了深远的影响。
以下是 AlexNet 的主要特点和架构:
架构
-
输入层:接受 224x224 的 RGB 图像(3 个通道)。
-
第一个卷积层:
- 卷积核大小:11x11
- 步长(stride):4
- 输出通道数:96
- 使用 ReLU 激活函数
- 使用局部响应归一化(Local Response Normalization)
-
第一个池化层:
- 大小:3x3
- 步长:2
-
第二个卷积层:
- 卷积核大小:5x5
- 输出通道数:256
- 使用 ReLU 激活函数
- 使用局部响应归一化
-
第二个池化层:
- 大小:3x3
- 步长:2
-
第三个卷积层: