1 处理方法
我们使用了Temporal Convolutional Network (TCN)、GRU(门控循环单元)和注意力机制来构建一个预测模型。TCN用于捕捉时间序列中的长期依赖性,而GRU层则帮助模型理解序列的动态变化,注意力机制则进一步提升了模型对关键特征的关注度。TCN模块包括卷积层、批标准化层和Dropout层,并利用残差连接来保留有用的信息。注意力模块通过对序列数据进行加权处理,进一步提高了模型对时间序列中重要特征的关注度。
适合各种时间序列预测时间序列预测。
1.tf的多变量输入,单变量输出
2.多时间步预测,单时间步预测
3.评价指标:R方 RMSE MAE MAPE,对比图,拟合图。
4.excel/csv文件中读取,可自己替换数据集。
在测试集上进行预测后,我们计算了模型的评价指标,包括R²、均方根误差(RMSE)和平均绝对误差(MAE),并将预测结果与真实值进行了可视化对比。