【时间序列分析】ARMA模型公式总结

本文详细介绍了ARMA(p,q)模型,包括其定义、中心化处理、延迟算子的引入以及均值、方差、自协方差和自相关系数的计算。此外,还讨论了模型比较、平稳性与可逆性的条件,以及传递形式和逆转形式的概念,是理解时间序列分析的重要参考资料。
摘要由CSDN通过智能技术生成

ARMA
Time Series Analysis
author:zoxiii


【参考文献】王燕. 应用时间序列分析-第5版[M]. 中国人民大学出版社, 2019.

0-模型

ARMA(p,q)

{ x t = ϕ 0 + ϕ 1 x t − 1 + . . . + ϕ p x t − p + ε t − θ 1 ε t − 1 − . . . − θ q ε t − q ϕ p ≠ 0   ,   θ q ≠ 0 E ( ε t ) = 0   ,   V a r ( ε t ) = σ ε 2   ,   E ( ε t ε s ) = 0   ,   s ≠ t E ( x s ε t ) = 0   ,   ∀ s < t \begin{cases} x_t=\phi_0+\phi_1x_{t-1}+...+\phi_px_{t-p}+\varepsilon_t-\theta_1\varepsilon_{t-1}-...-\theta_q\varepsilon_{t-q} \\ \phi_p \neq 0~,~\theta_q\ne 0 \\ E(\varepsilon_t)=0~,~Var(\varepsilon_t)=\sigma_\varepsilon^2~,~E(\varepsilon_t\varepsilon_s)=0~,~s \ne t \\ E(x_s\varepsilon_t)=0~,~\forall s \lt t \end{cases} xt=ϕ0+ϕ1xt1+...+ϕpxtp+εtθ1εt1...θqεtqϕp=0 , θq=0E(εt)=0 , Var(εt)=σε2 , E(εtεs)=0 , s=tE(xsεt)=0 , s<t

中心化ARMA(p,q)

x t = ϕ 1 x t − 1 + . . . + ϕ p x t − p + ε t − θ 1 ε t − 1 − . . . − θ q ε t − q x_t=\phi_1x_{t-1}+...+\phi_px_{t-p}+\varepsilon_t-\theta_1\varepsilon_{t-1}-...-\theta_q\varepsilon_{t-q} xt=ϕ1xt1+...+ϕpxtp+εtθ1εt1...θqεtq

引入延迟算子B

Φ ( B ) x t = Θ ( B ) ε t \Phi(B)x_t=\Theta(B)\varepsilon_t Φ(B)xt=Θ(B)εt

1-均值

E ( x t ) = ϕ 0 1 − ϕ 1 − . . . − ϕ p E(x_t)=\frac{\phi_0}{1-\phi_1-...-\phi_p} E(xt)=1ϕ1...ϕpϕ0

2-方差

V a r ( x t ) = σ ε 2 ∑ i = 0 ∞ G i 2 Var(x_t)=\sigma_\varepsilon^2\sum_{i=0}^{\infty}{G_i^2} Var(xt)=σε2i=0Gi2

3-延迟k自协方差函数

γ k = σ ε 2 ∑ i = 0 ∞ G i G i + k \gamma_k=\sigma_\varepsilon^2\sum_{i=0}^{\infty}{G_iG_{i+k}} γk=σε2i=0GiGi+k

4-延迟k自相关系数

ρ k = γ k γ 0 = ∑ i = 0 ∞ G i G i + k ∑ i = 0 ∞ G i 2 \rho_k=\frac{\gamma_k}{\gamma_0}=\frac{\sum_{i=0}^{\infty}{G_iG_{i+k}}}{\sum_{i=0}^{\infty}G_i^2} ρk=γ0γk=i=0Gi2i=0GiGi+k

5-延迟k偏自相关系数

拖尾

6-模型比较

模型ACFPACF
AR(p)←→ARMA(p,0)拖尾p阶截尾
MA(q)←→ARMA(0,q)q阶截尾拖尾
ARMA(p,q)拖尾拖尾

7-平稳性与可逆性

ARMA(p,q):
Φ ( B ) x t = Θ ( B ) ε t \Phi(B)x_t=\Theta(B)\varepsilon_t Φ(B)xt=Θ(B)εt
平稳条件: Φ ( B ) = 0 \Phi(B)=0 Φ(B)=0的根都在单位圆外

可逆条件: Θ ( B ) = 0 \Theta(B)=0 Θ(B)=0的根都在单位圆外

  • 当模型平稳且可逆时,它与自相关系数唯一对应

8-传递形式与逆转形式

传递形式

对于一个平稳可逆ARMA(p,q)模型,它的传递形式为:
x t = Θ ( B ) Φ ( B ) ε t = ∑ j = 0 ∞ G j ε t − j x_t=\frac{\Theta(B)}{\Phi(B)}\varepsilon_t=\sum_{j=0}^{\infty}{G_j\varepsilon_{t-j}} xt=Φ(B)Θ(B)εt=j=0Gjεtj
其中 G j G_j GjGreen函数,通过待定系数法可得它的递推公式:
{ G 0 = 1 G k = ∑ j = 1 k ϕ j ′ G k − j − θ k ′ , k ≥ 1 \begin{cases} G_0=1 \\ G_k=\sum_{j=1}^{k}{\phi_j'G_{k-j}-\theta_k',k \ge 1} \end{cases} {G0=1Gk=j=1kϕjGkjθk,k1
其中
ϕ j ′ = { ϕ j , 1 ≤ j ≤ p 0 , j > p          θ k ′ = { θ k , 1 ≤ k ≤ q 0 , k > q \phi_j'=\begin{cases} \phi_j,1 \le j \le p \\ 0,j \gt p \end{cases}~~~~~~~~ \theta_k'=\begin{cases} \theta_k,1 \le k \le q \\ 0,k \gt q \end{cases} ϕj={ϕj,1jp0,j>p        θk={θk,1kq0,k>q

逆转形式

对于一个平稳可逆ARMA(p,q)模型,它的逆转形式为:
ε t = Φ ( B ) Θ ( B ) x t = ∑ j = 0 ∞ I j x t − j \varepsilon_t=\frac{\Phi(B)}{\Theta(B)}x_t=\sum_{j=0}^{\infty}{I_jx_{t-j}} εt=Θ(B)Φ(B)xt=j=0Ijxtj
其中 I j I_j Ij逆函数,通过待定系数法可得它的递推公式:
{ I 0 = 1 I j = ∑ j = 1 k θ j ′ I k − j − ϕ k ′ , k ≥ 1 \begin{cases} I_0=1 \\ I_j=\sum_{j=1}^{k}{\theta_j'I_{k-j}-\phi_k',k \ge 1} \end{cases} {I0=1Ij=j=1kθjIkjϕk,k1
其中
ϕ j ′ = { ϕ j , 1 ≤ j ≤ p 0 , j > p          θ k ′ = { θ k , 1 ≤ k ≤ q 0 , k > q \phi_j'=\begin{cases} \phi_j,1 \le j \le p \\ 0,j \gt p \end{cases}~~~~~~~~ \theta_k'=\begin{cases} \theta_k,1 \le k \le q \\ 0,k \gt q \end{cases} ϕj={ϕj,1jp0,j>p        θk={θk,1kq0,k>q

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zoxiii

越打赏越生长

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值