【时间序列分析】MA模型公式总结


MA
Time Series Analysis
author:zoxiii


【参考文献】王燕. 应用时间序列分析-第5版[M]. 中国人民大学出版社, 2019.

0-模型

MA(q)

{ x t = μ + ε t − θ 1 ε t − 1 − . . . − θ q ε t − q θ q ≠ 0 E ( ε t ) = 0 , V a r ( ε t ) = σ ε 2 , E ( ε t ε s ) = 0 , s ≠ t \begin{cases} x_t=\mu+\varepsilon_t-\theta_1\varepsilon_{t-1}-...-\theta_q\varepsilon_{t-q} \\ \theta_q\ne 0 \\ E(\varepsilon_t)=0,Var(\varepsilon_t)=\sigma_\varepsilon^2,E(\varepsilon_t\varepsilon_s)=0,s \ne t \end{cases} xt=μ+εtθ1εt1...θqεtqθq=0E(εt)=0,Var(εt)=σε2,E(εtεs)=0,s=t

中心化MA(q)

μ = 0 \mu=0 μ=0
x t = ε t − θ 1 ε t − 1 − . . . − θ q ε t − q x_t=\varepsilon_t-\theta_1\varepsilon_{t-1}-...-\theta_q\varepsilon_{t-q} xt=εtθ1εt1...θqεtq

引入延迟算子B

x t = ε t − θ 1 ε t − 1 − . . . − θ q ε t − q   = ε t − θ 1 B ε t − . . . − θ q B q ε t = Θ ( B ) ε t                                x_t=\varepsilon_t-\theta_1\varepsilon_{t-1}-...-\theta_q\varepsilon_{t-q} \\ ~=\varepsilon_t-\theta_1B\varepsilon_{t}-...-\theta_qB^q\varepsilon_{t} \\ =\Theta(B)\varepsilon_t~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ xt=εtθ1εt1...θqεtq =εtθ1Bεt...θqBqεt=Θ(B)εt                              

得到q阶移动平均系数多项式:
Θ ( B ) = 1 − θ 1 B − θ 2 B 2 − . . . − θ q B q \Theta(B)=1-\theta_1B-\theta_2B^2-...-\theta_qB^q Θ(B)=1θ1Bθ2B2...θqBq

1-均值

E ( x t ) = μ E(x_t)=\mu E(xt)=μ

2-方差

V a r ( x t ) = ( 1 + θ 1 2 + . . . + θ q 2 ) σ ε 2 Var(x_t)=(1+\theta_1^2+...+\theta_q^2)\sigma_\varepsilon^2 Var(xt)=(1+θ12+...+θq2)σε2

3-延迟k自协方差函数

  • MA(q)自协方差函数只与滞后阶数k有关,且q阶截尾

γ k = { ( 1 + θ 1 2 + . . . + θ q 2 ) σ ε 2 ,           k = 0 ( − θ k + ∑ i = 1 q − k θ i θ k + i ) σ ε 2 ,     1 ≤ k ≤ q 0 ,                                         k > q \gamma_k=\begin{cases} (1+\theta_1^2+...+\theta_q^2)\sigma_\varepsilon^2,~~~~~~~~~k=0 \\ (-\theta_k+\sum_{i=1}^{q-k}{\theta_i\theta_{k+i}})\sigma_\varepsilon^2,~~~1 \le k \le q \\ 0,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~k \gt q \end{cases} γk=(1+θ12+...+θq2)σε2,         k=0(θk+i=1qkθiθk+i)σε2,   1kq0,                                       k>q

4-延迟k自相关系数

MA(1)

ρ k = γ k γ 0 = { 1 ,          k = 0 − θ 1 1 + θ 1 2 ,     k = 1 0 ,          k ≥ 2 \rho_k=\frac{\gamma_k}{\gamma_0}=\begin{cases} 1,~~~~~~~~k=0 \\ \frac{-\theta_1}{1+\theta_1^2},~~~k=1 \\ 0,~~~~~~~~k \ge 2 \end{cases} ρk=γ0γk=1,        k=01+θ12θ1,   k=10,        k2

MA(2)

ρ k = γ k γ 0 = { 1 ,                k = 0 − θ k + θ 1 θ 2 1 + θ 1 2 + θ 2 2 ,     k = 1 − θ 2 1 + θ 1 2 + θ 2 2 ,      k = 2 0 ,                k ≥ 3 \rho_k=\frac{\gamma_k}{\gamma_0}=\begin{cases} 1,~~~~~~~~~~~~~~k=0 \\ \frac{-\theta_k+\theta_1\theta_2}{1+\theta_1^2+\theta_2^2},~~~k=1 \\ \frac{-\theta_2}{1+\theta_1^2+\theta_2^2},~~~~k=2 \\ 0,~~~~~~~~~~~~~~k \ge 3 \end{cases} ρk=γ0γk=1,              k=01+θ12+θ22θk+θ1θ2,   k=11+θ12+θ22θ2,    k=20,              k3

MA(q)

ρ k = γ k γ 0 = { 1 ,                         k = 0 − θ k + ∑ i = 1 q − k θ i θ k + i 1 + θ 1 2 + . . . + θ q 2 ,     1 ≤ k ≤ q 0 ,                         k > q \rho_k=\frac{\gamma_k}{\gamma_0}=\begin{cases} 1,~~~~~~~~~~~~~~~~~~~~~~~k=0 \\ \frac{-\theta_k+\sum_{i=1}^{q-k}{\theta_i\theta_{k+i}}}{1+\theta_1^2+...+\theta_q^2},~~~1 \le k \le q \\ 0,~~~~~~~~~~~~~~~~~~~~~~~k \gt q \end{cases} ρk=γ0γk=1,                       k=01+θ12+...+θq2θk+i=1qkθiθk+i,   1kq0,                       k>q

5-延迟k偏自相关系数

  • MA(q)模型的延迟k偏自相关系数 ϕ k k \phi_{kk} ϕkk拖尾

ϕ k k \phi_{kk} ϕkk

6-验证模型可逆性

已知中心化MA(q)模型为 x t = ε t − θ 1 ε t − 1 − . . . − θ q ε t − q x_t=\varepsilon_t-\theta_1\varepsilon_{t-1}-...-\theta_q\varepsilon_{t-q} xt=εtθ1εt1...θqεtq
x t = ε t − θ 1 ε t − 1 − . . . − θ q ε t − q   = ε t − θ 1 B ε t − . . . − θ q B q ε t = Θ ( B ) ε t                                x_t=\varepsilon_t-\theta_1\varepsilon_{t-1}-...-\theta_q\varepsilon_{t-q}\\ ~=\varepsilon_t-\theta_1B\varepsilon_{t}-...-\theta_qB^q\varepsilon_{t}\\ =\Theta(B)\varepsilon_t~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ xt=εtθ1εt1...θqεtq =εtθ1Bεt...θqBqεt=Θ(B)εt                              
∴得到移动平均系数多项式 Θ ( B ) = 1 − θ 1 B − θ 2 B 2 − . . . − θ q B q \Theta(B)=1-\theta_1B-\theta_2B^2-...-\theta_qB^q Θ(B)=1θ1Bθ2B2...θqBq

Θ ( B ) = 0 \Theta(B)=0 Θ(B)=0的根为 λ \lambda λ

1 − θ 1 λ − θ 2 λ 2 − . . . − θ q λ q = 0 1-\theta_1\lambda-\theta_2\lambda^2-...-\theta_q\lambda^q=0 1θ1λθ2λ2...θqλq=0

求解得到 λ 1 , λ 2 , . . . \lambda_1,\lambda_2,... λ1,λ2,...

当满足 ∣ λ 1 ∣ > 1 且 ∣ λ 2 ∣ > 1 且 . . . |\lambda_1|\gt 1且|\lambda_2|\gt 1且... λ1>1λ2>1...时,MA(q)模型可逆。

7-逆函数递推公式

逆函数 I j I_j Ij

如果MA(q) x t = ε t − θ 1 ε t − 1 − . . . − θ q ε t − q x_t=\varepsilon_t-\theta_1\varepsilon_{t-1}-...-\theta_q\varepsilon_{t-q} xt=εtθ1εt1...θqεtq可逆,有

{ Θ ( B ) ε t = x t , [ 1 ] ε t = I ( B ) x t , [ 2 ] \begin{cases} \Theta(B)\varepsilon_t=x_t,[1] \\ \varepsilon_t=I(B)x_t,[2] \end{cases} {Θ(B)εt=xt,[1]εt=I(B)xt,[2]
其中
Θ ( B ) = 1 − θ 1 B − θ 2 B 2 − . . . − θ q B q = 1 − ∑ i = 1 q θ i B i \Theta(B)=1-\theta_1B-\theta_2B^2-...-\theta_qB^q=1-\sum_{i=1}^{q}{\theta_iB^i} Θ(B)=1θ1Bθ2B2...θqBq=1i=1qθiBi
I ( B ) = I 1 + I 1 B + I 2 B 2 + . . . = ∑ i = 0 ∞ I i B i I(B)=I_1+I_1B+I_2B^2+...=\sum_{i=0}^{\infty}{I_iB^i} I(B)=I1+I1B+I2B2+...=i=0IiBi
将[2]式代入[1]式得到 Θ ( B ) I ( B ) x t = x t \Theta(B)I(B)x_t=x_t Θ(B)I(B)xt=xt,按照待定系数法求得
I 0 = 1 I l = ∑ i = 1 l θ i ′ I l − i I_0=1 \\ I_l=\sum_{i=1}^{l}{\theta_i'I_{l-i}} I0=1Il=i=1lθiIli
其中
l ≥ 1 θ i ′ = { θ i ,     i ≤ q 0 ,      i > q l \ge 1 \\ \theta_i'=\begin{cases} \theta_i,~~~i \le q \\ 0,~~~~i \gt q \end{cases} l1θi={θi,   iq0,    i>q

  • 14
    点赞
  • 60
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zoxiii

越打赏越生长

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值