Unsupervised domain adaptation for cross-modality liver segmentation via joint adversarial learning

0.Motivation

CT 数据较多 较可信
MRI 含有较多的信息
因此希望可以将学习到的知识从包含标记CT图像的源域转移到包含未标记Mr图像的目标域,希望实现无监督域自适应(这有什么因果关系吗?)

文章是MICCAI2019 作者是来自港中文

1.Contribution

  1. 提出了一个使用对抗学习和自学习的多模态(unpaired CT and MRI)无监督的 肝脏分割模型
  2. 提出了一种对抗性学习的后原位(post-situ)识别方法,以关注目标域和源域之间的任务相关特征的对齐。( 使用这种技术的目的是为了避免对齐冗余特征的分布。
  3. 提出了一种语义感知和形状熵()感知的对抗性学习,以对齐从目标和源域提取的潜在空间的底层特征的分布 为了对齐从源域和目标域中提取的低级任务相关特征的分布
  4. 提出了一种伪标签生成的平均补全方法和低信号增强函数 为了提高模型的鲁棒性
  5. 提出了一个叫做student-to-partner 的自学习机制 为了提高模型的准确率

2. Network structure

在这里插入图片描述

U1-U4 是正常的分割网络 D1和D2是基于自学习和对抗网络的鉴别器 U3是主要分割MRI的
U1先开始在CT 上进行有监督的学习,U1 与 U2 共享权重,训练U3的时候冻结,只有绿色部分的参数才在训练的过程中参与更新

Segmentation Network Structure
U1-4 都是含有attention 模块的U-net
在这里插入图片描述

Post-situ identification for adversarial learning
在这里插入图片描述
D3 和 D1 是用来判断是否domain adaptation的能力
Loss 就是很自然的Gan的Loss
在这里插入图片描述

Semantic-aware and shape-entropy-aware adversarial learning
在这里插入图片描述
这里是说self-information 可以从图中看到非常的亮或者是暗 这里说明其结果非常的接近0或者是1。通过这种方式来确定边界
在这里插入图片描述
然后设计出一个gan进行训练

Mean completer of pseudo-label generation
在这里插入图片描述
是U2 U3 和 U4 的输出

在这里插入图片描述

用来生成伪标签 感觉还挺work

Low-signal augmentation function
感觉是个很好的track Mark 一下
在这里插入图片描述
比min-max 的normalization 要复杂一些
结果如下:
在这里插入图片描述

** Pixel-adaptive mask refinement**
在这里插入图片描述
把这些方法作为self-learning来提升模型的分割效果 感觉可以考虑

Student-to-partner learning
在这里插入图片描述

3.Result

在这里插入图片描述
原文针对每个部分都进行了分析

工作量很大 内容很充分 而且提出了许多有趣的问题的paper

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值