CVPR2020超分汇总

一、Image Super-Resolution with Cross-Scale Non-Local Attention and Exhaustive Self-Exemplars Mining

(1)出发点:
  • 自然图像中不同区域会存在一些相似结构,当前模型忽略了图像中长距离的特征相似性。
  • 最近的一些研究通过探索非局部注意力模块成功地利用了这种内在特征相关性(如SAN中的非局部模块)。然而目前的深度模型都没有研究图像的另一个固有特性:跨尺度特征相关性。
    自然图像中的跨尺度的非局部相似结构
(2)主要贡献:
  • 提出跨尺度非局部(CS-NL)注意模块,并将其集成到循环神经网络中,该模块可以使网络在单个低分辨率图像中发现更多的跨尺度特征相关性。
(3)模型网络结构

在这里插入图片描述

(4)Cross-Scale Non-Local (CS-NL) attention module

在这里插入图片描述
Image Super-Resolution with Cross-Scale Non-Local Attention and Exhaustive Self-Exemplars Mining论文详细讲解

二、Robust Reference-based Super-Resolution with Similarity-Aware Deformable Convolution

(1)出发点
  • 图像降采样过程丢失了原始的高频信息,因此想要重建精确高频细节是很有挑战的。基于参考图像的超分方法(RefSR)可以利用相似的高频信息协助LR完成重建。
  • 现有RefSR方法的参考图像主要从视频帧、web图像搜索或从不同的视点中获得。他们的缺陷是对参考图像的相似性要求较高
(2)主要贡献
  • 利用可分离卷积(similarity-aware deformable convolution)设计相似性搜索与特征提取网络(SSEN)来提取参考图像的特征。
  • 该方法具有较好的鲁棒性和自适应能力,且在给定不相关参考点的情况下PSNR没有下降。
(3)网路结构

在这里插入图片描述

(4)动态偏移估计模块

作用:估计偏移偏移量,然后特征对齐。
在这里插入图片描述

三、Residual Feature Aggregation Network for Image Super-Resolution

(1)出发点

本文着重网络结构的优化,通过优化信息流,提高重建的性能。

(2)主要贡献
  • 提出一种特征聚合框架(Feature Aggregation),可以显著提升网络的性能。
  • 提出增强的空间注意力模块。
(3)网络结构

在这里插入图片描述

(4)特征聚合模块

在这里插入图片描述

四、Closed-loop Matters: Dual Regression Networks for Single Image Super-Resolution

(1)出发点
  • 现有方法存在映射函数解空间大的问题,导致重建结果不理想。
  • 现实场景中成对数据是不存在的,如何有效地利用不成对数据使SR模型适应实际应用成为一个紧迫而重要的问题。
(2)主要工作
  • 增加约束,设计双重回归方案,这样映射可以形成一个闭环,以提高模型的性能。
  • 针对现实场景中无成对数据设计无监督方案。
(3)双重回归结构示意图

增加了一个回路和一个LR图像上的损失
在这里插入图片描述

(4)DRN结构

主体网络为U-Net结构,增加回路(红色箭头),对LR进行监督。
在这里插入图片描述

(5)成对数据训练

在这里插入图片描述

(6)非成对数据训练

在这里插入图片描述

五、Structure-Preserving Super Resolution with Gradient Guidance

(1)出发点
  • 现有方法利用GAN来生成纹理更真实的高分辨率图像,但是在此过程中,往往会产生一些结构扭曲能现象(undesired structural distortions)。
(2)主要工作
  • 本文提出了一种利用梯度信息保持重建图像结构准确性的超分辨方法。
(3)网络结构示意图

在这里插入图片描述

(4)损失函数
  • 常规GAN损失:
    生成器:L1损失+对抗损失+感知损失
    判别器1:判别损失
  • 梯度损失:
    梯度图L1损失+梯度图判别损失+梯度图对抗损失
    判别器2:梯度图判别损失
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  • 生成器Total loss
    在这里插入图片描述

(6)Perceptual Extreme Super Resolution Network with Receptive Field Block

(1)出发点

极端感知超分任务是极其困难的,因为不同图像的纹理细节差异很大。

(2)主要工作

设计感知模块(receptive field block,RFB)来为了提取多尺度信息,同时增强特征可判别性。

(3)RFA模块

在这里插入图片描述

要训练SRGAN超分模型,首先需要准备高分辨率(HR)的原始图像以及与之配对的低分辨率(LR)图像。可以使用SRGAN PyTorch代码来进行训练,该代码会对HR图像进行下采样以生成LR图像,并在此基础上进行训练。在训练过程中,使用SRResNet网络作为生成网络,该网络基于ResNet块结构,具有深度,可以重建出具有丰富细节的图像。 在SRGAN模型中,生成网络使用感知损失进行训练,而不是传统的均方误差(MSE)方法。感知损失使用预训练的VGG网络生成的特征图进行计算,并结合生成网络本身的对抗损失进行训练。同时,判别器网络也需要进行训练。生成网络和判别器网络的结合构成了SRGAN网络。 通过训练SRGAN模型,可以实现重建出具有较高感知质量、即人眼感知舒适的、具有丰富细节的图像。SRResNet网络可以作为独立的SR网络,通过使用MSE作为损失函数,并采用4倍的缩放倍数和16个残差块来实现超分辨率重建。SRGAN模型中的生成网络即是SRResNet网络,其以ResNet块为基本结构,是一个具有深度的SR网络。 总结起来,训练SRGAN超分模型的步骤包括准备HR和LR图像配对数据集,使用SRGAN PyTorch代码进行训练,训练过程中使用感知损失和对抗损失进行优化,同时对生成网络和判别器网络进行训练。通过这样的训练过程,可以实现重建出具有高感知质量和丰富细节的图像。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [超分之一文读懂SRGAN](https://blog.csdn.net/MR_kdcon/article/details/123525914)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [PyTorch 版本 SRGAN训练和测试 | 超分重建探讨汇总【CVPR 2017 ——详尽教程】](https://blog.csdn.net/sinat_28442665/article/details/108119702)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值