对平稳马尔可夫链(stationary distribution of a Markov chain)的学习

本文介绍了马尔可夫链的平稳分布和平稳马尔科夫链的概念,包括其定义、性质及存在的条件,并进一步阐述了极限分布与平稳分布的关系。同时,文中还提到了可逆马尔科夫链的特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先介绍马尔可夫链的平稳分布
  给定一个马尔可夫链,其状态空间存在概率分布π=π(s),且转移矩阵和转移概率P=p(i,j),若满足π=πP(平衡方程),则称π是该马尔可夫链的平稳分布,或称为转移阵P的不变测度
  如果马尔可夫链的存在平稳分布,并且其初始分布也是平稳分布,则该马尔可夫链处于稳态。
  平稳分布准则:对不可约的马尔可夫链,当且仅当其存在唯一平稳分布,即平衡方程π=πP在正单纯形上有唯一解时,该马尔可夫链是正常返的,且平稳分布于平均返回时间呈倒数关系在这里插入图片描述

  • 马尔可夫链存在平稳分布的充要条件是其存在正常返状态。

然后再了解一下马尔可夫链的极限分布
  给定一个马尔可夫链,其状态空间存在概率分布π=π(s),且等于随机变量概率分布的极限*(时间步趋于无穷)*,则称该分布为马尔可夫链的极限分布。在这里插入图片描述

  • 极限分布一定是平稳分布,反之不成立。

在了解平稳分布和极限分布之后,就可以更好的了解平稳马尔科夫链也称齐次马尔可夫链

在这里插入图片描述

  • 平稳马尔科夫链拥有唯一的平稳分布且极限分布收敛于平稳分布,且其是严格的平稳随机过程,演变与时间无关。

若平稳马尔可夫链对其任意两个状态满足细致平衡条件,则其具有可逆性,被称为可逆马尔可夫链在这里插入图片描述

  • 马尔可夫链的可逆性是更严格的不可约性,即其不仅可以在任意状态间转移,且向各状态转移的概率是相等的,因此可逆马尔可夫链是平稳马尔可夫链的充分非必要条件。

【注】文章内容总结自互联网。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值