bagging与boosting

本文介绍了Bagging和Boosting两种集成学习方法。Bagging通过自助采样法生成多个子集,训练独立的个体学习器,再进行平均或投票,降低模型方差。Boosting则通过迭代和调整样本权重,使弱学习器关注分类错误的样本,降低模型偏差。两者的区别在于训练方式和降低错误的方向,Bagging注重方差,Boosting关注偏差。
摘要由CSDN通过智能技术生成

Bagging

(Bootstrap aggregating)是一种基于自助采样法(bootstrap sampling)的集成学习方法,它通过从训练集中有放回地采样生成多个子集,每个子集用于训练一个独立的个体学习器,然后将所有个体学习器的预测结果进行平均或投票,得到最终的集成结果。Bagging的目的是减少模型的方差,提高模型的泛化性能,常见的Bagging算法包括随机森林(Random Forest)。

Boosting

是一种迭代的集成学习方法,它通过逐步训练个体学习器,并根据其表现对样本权重进行调整,以使得难以分类的样本得到更多关注,从而提高模型的精度。Boosting算法的核心思想是通过多个弱学习器的组合,得到一个强学习器,常见的Boosting算法包括AdaBoost、GBDT(Gradient Boosting Decision Tree)和XGBoost。


区别

它们的不同之处在于个体学习器的训练方式和预测结果的组合方法,Bagging注重降低模型的方差,Boosting注重降低模型的偏差:

       在机器学习中,模型的方差(variance)指的是模型的预测结果对于训练数据的变化敏感程度,即模型在不同的训练数据集上产生的预测结果的差异大小。如果一个模型具有高方差,说明它对于训练数据的过拟合程度较高,容易出现过拟合现象,但在训练集上表现良好,而在测试集上的表现较差。

        Bagging算法可以降低模型的方差,原因在于通过对数据进行自助采样,Bagging算法生成了多个不同的训练集,并在每个训练集上训练一个弱学习器。这些弱学习器是独立的,由于每个弱学习器对应的训练集是不同的,因此每个弱学习器都具有不同的误差和方差。当这些弱学习器的结果通过平均或投票等方式结合在一起时,弱学习器之间的方差会互相抵消,从而得到一个更加稳定的集成模型。因此,Bagging算法可以降低整体模型的方差,提高模型的泛化能力。

        Bagging算法不能解决模型的偏差问题,因为弱学习器之间的误差不会相互抵消。

        Boosting算法通过迭代训练弱学习器,每次都会调整训练数据的权重,并让弱学习器关注上一轮训练中分类错误的样本,从而降低整体模型的偏差,提高模型的准确性。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坠金

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值