图像转化为特征向量作用

记录下:

在使用Inception-v3模型进行二分类模型时,想不通为何要将图像转为图像的特征向量文件。

二维中的向量,代表平面上的一个线段,当然有方向有大小,在三维中同理,只不过 一个向量所代表的意义扩展了。

首先 我认为,将图像转化为特征向量在作为网络的输入,要远比图像直接作为网络输入的数据量要小得多。

同时 我认为,将图像使用网络模型特诊向量化时,也保留了图像的特征,不论在识别还是分类任务上,对最终实现的分类效果或识别效果影响不大?(可能我没追求那么多)而且 不管向量压缩的维度至多少,只需将训练时输入网络和测试时输入网络的图像均转化为同一维度,使其在同一个向量空间中,神经网络就能通过优化器进行学习,

个人理解。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值